These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32736269)

  • 1. Process design tools and techno-economic analysis for capacitive deionization.
    Hasseler TD; Ramachandran A; Tarpeh WA; Stadermann M; Santiago JG
    Water Res; 2020 Sep; 183():116034. PubMed ID: 32736269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation.
    Ramachandran A; Oyarzun DI; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2019 May; 155():76-85. PubMed ID: 30831426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of the micropores electro-sorption resistance in capacitive deionization systems.
    Salamat Y; Hidrovo CH
    Water Res; 2020 Feb; 169():115286. PubMed ID: 31734390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies.
    Hand S; Shang X; Guest JS; Smith KC; Cusick RD
    Environ Sci Technol; 2019 Apr; 53(7):3748-3756. PubMed ID: 30821148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes.
    Son M; Pothanamkandathil V; Yang W; Vrouwenvelder JS; Gorski CA; Logan BE
    Environ Sci Technol; 2020 Mar; 54(6):3628-3635. PubMed ID: 32092271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs.
    Hand S; Guest JS; Cusick RD
    Environ Sci Technol; 2019 Nov; 53(22):13353-13363. PubMed ID: 31657552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Resistances of a Capacitive Deionization System.
    Qu Y; Baumann TF; Santiago JG; Stadermann M
    Environ Sci Technol; 2015 Aug; 49(16):9699-706. PubMed ID: 26214554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Various cell architectures of capacitive deionization: Recent advances and future trends.
    Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G
    Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Operational Modes to Increase Energy Efficiency in Capacitive Deionization Systems.
    García-Quismondo E; Santos C; Soria J; Palma J; Anderson MA
    Environ Sci Technol; 2016 Jun; 50(11):6053-60. PubMed ID: 27167689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.