These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32736687)
1. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Golubewa L; Kulahava T; Kunitskaya Y; Bulai P; Shuba M; Karpicz R Biochem Biophys Res Commun; 2020 Aug; 529(3):647-651. PubMed ID: 32736687 [TBL] [Abstract][Full Text] [Related]
2. Specificity of carbon nanotube accumulation and distribution in cancer cells revealed by K-means clustering and principal component analysis of Raman spectra. Golubewa L; Timoshchenko I; Kulahava T Analyst; 2024 Apr; 149(9):2680-2696. PubMed ID: 38497436 [TBL] [Abstract][Full Text] [Related]
3. Electric field quenching of carbon nanotube photoluminescence. Naumov AV; Bachilo SM; Tsyboulski DA; Weisman RB Nano Lett; 2008 May; 8(5):1527-31. PubMed ID: 18429639 [TBL] [Abstract][Full Text] [Related]
4. Multi-Parametric Study of the Viability of Mi Y; Li P; Liu Q; Xu J; Yang Q; Tang J Technol Cancer Res Treat; 2019 Jan; 18():1533033819876918. PubMed ID: 31551008 [TBL] [Abstract][Full Text] [Related]
5. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes. Hennrich F; Krupke R; Kappes MM; Löhneysen HV J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of Au-attached single-walled carbon nanotube bundles. Jeong GH; Suzuki S; Kobayashi Y Nanotechnology; 2009 Jul; 20(28):285708. PubMed ID: 19550010 [TBL] [Abstract][Full Text] [Related]
8. Raman and electrochemical impedance studies of sol-gel titanium oxide and single walled carbon nanotubes composite films. Rincón ME; Trujillo-Camacho ME; Miranda-Hernández M; Cuentas-Gallegos AK; Orozco G J Nanosci Nanotechnol; 2007; 7(4-5):1596-603. PubMed ID: 17450931 [TBL] [Abstract][Full Text] [Related]
9. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds. Ostojic GN; Hersam MC Small; 2012 Jun; 8(12):1840-5. PubMed ID: 22461319 [TBL] [Abstract][Full Text] [Related]
10. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy. Atalay H; Lefrant S J Nanosci Nanotechnol; 2004 Sep; 4(7):749-61. PubMed ID: 15570957 [TBL] [Abstract][Full Text] [Related]
11. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube. Baei MT; Peyghan AA; Moghimi M J Mol Model; 2012 Sep; 18(9):4477-89. PubMed ID: 22643968 [TBL] [Abstract][Full Text] [Related]
12. Correlation between in Situ Raman scattering and electrical conductance for an individual double-walled carbon nanotube. Yuan S; Zhang Q; You Y; Shen ZX; Shimamoto D; Endo M Nano Lett; 2009 Jan; 9(1):383-7. PubMed ID: 19143506 [TBL] [Abstract][Full Text] [Related]
13. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO. Herrera JE; Balzano L; Pompeo F; Resasco DE J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241 [TBL] [Abstract][Full Text] [Related]
14. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes. Mathur A; Tweedie M; Roy SS; Maguire PD; McLaughlin JA J Nanosci Nanotechnol; 2009 Jul; 9(7):4392-6. PubMed ID: 19916463 [TBL] [Abstract][Full Text] [Related]
15. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. Dillon AC; Yudasaka M; Dresselhaus MS J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946 [TBL] [Abstract][Full Text] [Related]
16. Effect of dentin surface modification using carbon nanotubes on dental bonding and antibacterial ability. Suo L; Li Z; Luo F; Chen J; Jia L; Wang T; Pei X; Wan Q Dent Mater J; 2018 Mar; 37(2):229-236. PubMed ID: 29109338 [TBL] [Abstract][Full Text] [Related]
17. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS Small; 2006 May; 2(5):667-76. PubMed ID: 17193105 [TBL] [Abstract][Full Text] [Related]
18. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length. Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy. Musumeci AW; Waclawik ER; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):140-2. PubMed ID: 18207450 [TBL] [Abstract][Full Text] [Related]
20. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system. Zhu X; Xie Y; Zhang Y; Huang H; Huang S; Hou L; Zhang H; Li Z; Shi J; Zhang Z J Biomater Appl; 2014 Nov; 29(5):769-79. PubMed ID: 25033825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]