These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32736687)

  • 21. Interfacing neurons through the patch membrane pierced with single-walled carbon nanotubes.
    Hayashida Y; Kinoshita T; Motomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4502-5. PubMed ID: 24110734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of carbon nanotubes.
    Awasthi K; Srivastava A; Srivastava ON
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1616-36. PubMed ID: 16245519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.
    Endo M; Muramatsu H; Hayashi T; Kim YA; Van Lier G; Charlier JC; Terrones H; Terrones M; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1099-105. PubMed ID: 15943450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan.
    Saha LC; Nag OK; Doughty A; Liu H; Chen WR
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802313. PubMed ID: 30261832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ raman measurements of suspended individual single-walled carbon nanotubes under strain.
    Lee SW; Jeong GH; Campbell EE
    Nano Lett; 2007 Sep; 7(9):2590-5. PubMed ID: 17718583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance Raman Optical Activity Spectra of Single-Walled Carbon Nanotube Enantiomers.
    Magg M; Kadria-Vili Y; Oulevey P; Weisman RB; Bürgi T
    J Phys Chem Lett; 2016 Jan; 7(2):221-5. PubMed ID: 26709444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields.
    Mi Y; Liu Q; Li P; Xu J
    Biomed Res Int; 2019; 2019():9654583. PubMed ID: 31930142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-walled carbon-nanotube dispersion with electrostatically tethered nanoplatelets.
    Sun D; Everett WN; Chu CC; Sue HJ
    Small; 2009 Dec; 5(23):2692-7. PubMed ID: 19771566
    [No Abstract]   [Full Text] [Related]  

  • 30. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.
    Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J
    ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes.
    Mesgari S; Sundramoorthy AK; Loo LS; Chan-Park MB
    Faraday Discuss; 2014; 173():351-63. PubMed ID: 25319125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats.
    Clichici S; Biris AR; Catoi C; Filip A; Tabaran F
    J Appl Toxicol; 2014 Apr; 34(4):332-44. PubMed ID: 23677818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase transition of nanotube-confined water driven by electric field.
    Fu Z; Luo Y; Ma J; Wei G
    J Chem Phys; 2011 Apr; 134(15):154507. PubMed ID: 21513395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biocompatible chitosan composite containing phosphotungstic acid modified single-walled carbon nanotubes.
    Zhao Q; Yin J; Feng X; Shi Z; Ge Z; Jin Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7126-9. PubMed ID: 21137879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-walled carbon nanotubes as excitonic optical wires.
    Joh DY; Kinder J; Herman LH; Ju SY; Segal MA; Johnson JN; Chan GK; Park J
    Nat Nanotechnol; 2011 Jan; 6(1):51-6. PubMed ID: 21170038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subdiffraction-limited far-field Raman spectroscopy of single carbon nanotubes: an unenhanced approach.
    Kaplan-Ashiri I; Titus EJ; Willets KA
    ACS Nano; 2011 Feb; 5(2):1033-41. PubMed ID: 21229967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic properties of a single-walled carbon nanotube/150mer-porphyrin system measured by point-contact current imaging atomic force microscopy.
    Tanaka H; Yajima T; Kawao M; Ogawa T
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1644-8. PubMed ID: 17025064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrathin carbon nanotube-DNA hybrid membrane formation by simple physical adsorption onto a thin alumina substrate.
    Guo M; Lv W; Zhang S; Jin FM; Wang Q; Ling GW; Yang QH
    Nanotechnology; 2010 Jul; 21(28):285601. PubMed ID: 20562483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid and delayed effects of single-walled carbon nanotubes in glioma cells.
    Golubewa L; Kulahava T; Timoshchenko I; Shuba M; Svirko Y; Kuzhir P
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34547739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.