These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32737140)

  • 1. Detection of Diabetes Status and Type in Youth Using Electronic Health Records: The SEARCH for Diabetes in Youth Study.
    Wells BJ; Lenoir KM; Wagenknecht LE; Mayer-Davis EJ; Lawrence JM; Dabelea D; Pihoker C; Saydah S; Casanova R; Turley C; Liese AD; Standiford D; Kahn MG; Hamman R; Divers J
    Diabetes Care; 2020 Oct; 43(10):2418-2425. PubMed ID: 32737140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining diagnosis date of diabetes using structured electronic health record (EHR) data: the SEARCH for diabetes in youth study.
    Lenoir KM; Wagenknecht LE; Divers J; Casanova R; Dabelea D; Saydah S; Pihoker C; Liese AD; Standiford D; Hamman R; Wells BJ;
    BMC Med Res Methodol; 2021 Oct; 21(1):210. PubMed ID: 34629073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of administrative and electronic health record data for development of automated algorithms for childhood diabetes case ascertainment and type classification: the SEARCH for Diabetes in Youth Study.
    Zhong VW; Pfaff ER; Beavers DP; Thomas J; Jaacks LM; Bowlby DA; Carey TS; Lawrence JM; Dabelea D; Hamman RF; Pihoker C; Saydah SH; Mayer-Davis EJ;
    Pediatr Diabetes; 2014 Dec; 15(8):573-84. PubMed ID: 24913103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of algorithms to identify newly diagnosed type 1 and type 2 diabetes in pediatric population using electronic medical records and claims data.
    Teltsch DY; Fazeli Farsani S; Swain RS; Kaspers S; Huse S; Cristaldi C; Nordstrom BL; Brodovicz KG
    Pharmacoepidemiol Drug Saf; 2019 Feb; 28(2):234-243. PubMed ID: 30677205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of algorithms to classify type 1 and 2 diabetes according to age at diagnosis using electronic health records.
    Ke C; Stukel TA; Luk A; Shah BR; Jha P; Lau E; Ma RCW; So WY; Kong AP; Chow E; Chan JCN
    BMC Med Res Methodol; 2020 Feb; 20(1):35. PubMed ID: 32093635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient approach for surveillance of childhood diabetes by type derived from electronic health record data: the SEARCH for Diabetes in Youth Study.
    Zhong VW; Obeid JS; Craig JB; Pfaff ER; Thomas J; Jaacks LM; Beavers DP; Carey TS; Lawrence JM; Dabelea D; Hamman RF; Bowlby DA; Pihoker C; Saydah SH; Mayer-Davis EJ
    J Am Med Inform Assoc; 2016 Nov; 23(6):1060-1067. PubMed ID: 27107449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of ICD-10-CM codes for determination of diabetes type for persons with youth-onset type 1 and type 2 diabetes.
    Chi GC; Li X; Tartof SY; Slezak JM; Koebnick C; Lawrence JM
    BMJ Open Diabetes Res Care; 2019; 7(1):e000547. PubMed ID: 30899525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of pediatric diabetes case identification approaches for diagnosed cases by using information in the electronic health records of a large integrated managed health care organization.
    Lawrence JM; Black MH; Zhang JL; Slezak JM; Takhar HS; Koebnick C; Mayer-Davis EJ; Zhong VW; Dabelea D; Hamman RF; Reynolds K
    Am J Epidemiol; 2014 Jan; 179(1):27-38. PubMed ID: 24100956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record.
    Jamian L; Wheless L; Crofford LJ; Barnado A
    Arthritis Res Ther; 2019 Dec; 21(1):305. PubMed ID: 31888720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electronic health record based algorithms to identify individuals with diabetic retinopathy.
    Breeyear JH; Mitchell SL; Nealon CL; Hellwege JN; Charest B; Khakharia A; Halladay CW; Yang J; Garriga GA; Wilson OD; Basnet TB; Hung AM; Reaven PD; Meigs JB; Rhee MK; Sun Y; Lynch MG; Sobrin L; Brantley MA; Sun YV; Wilson PW; Iyengar SK; Peachey NS; Phillips LS; Edwards TL; Giri A
    J Am Med Inform Assoc; 2024 Nov; 31(11):2560-2570. PubMed ID: 39158361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accuracy of provider diagnosed diabetes type in youth compared to an etiologic criteria in the SEARCH for Diabetes in Youth Study.
    Crume TL; Hamman RF; Isom S; Divers J; Mayer-Davis EJ; Liese AD; Saydah S; Lawrence JM; Pihoker C; Dabelea D;
    Pediatr Diabetes; 2020 Dec; 21(8):1403-1411. PubMed ID: 32981196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data.
    Klompas M; Eggleston E; McVetta J; Lazarus R; Li L; Platt R
    Diabetes Care; 2013 Apr; 36(4):914-21. PubMed ID: 23193215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of an algorithm for identifying type 1 diabetes in adults based on electronic health record data.
    Schroeder EB; Donahoo WT; Goodrich GK; Raebel MA
    Pharmacoepidemiol Drug Saf; 2018 Oct; 27(10):1053-1059. PubMed ID: 29292555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Health Surveillance: Validation of a Novel Electronic Medical Records-Based Definition of Cases of Pediatric Type 1 and Type 2 Diabetes Mellitus.
    Kosowan L; Wicklow B; Queenan J; Yeung R; Amed S; Singer A
    Can J Diabetes; 2019 Aug; 43(6):392-398. PubMed ID: 30956098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating an ontology-based algorithm to identify patients with type 2 diabetes mellitus in electronic health records.
    Rahimi A; Liaw ST; Taggart J; Ray P; Yu H
    Int J Med Inform; 2014 Oct; 83(10):768-78. PubMed ID: 25011429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systematic Review of Case-Identification Algorithms Based on Italian Healthcare Administrative Databases for Two Relevant Diseases of the Endocrine System: Diabetes Mellitus and Thyroid Disorders.
    Dalla Zuanna T; Pitter G; Canova C; Simonato L; Gnavi R
    Epidemiol Prev; 2019; 43(4 Suppl 2):17-36. PubMed ID: 31650804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms.
    Jorge A; Castro VM; Barnado A; Gainer V; Hong C; Cai T; Cai T; Carroll R; Denny JC; Crofford L; Costenbader KH; Liao KP; Karlson EW; Feldman CH
    Semin Arthritis Rheum; 2019 Aug; 49(1):84-90. PubMed ID: 30665626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of methods for assessing cardiovascular disease using electronic health data in a cohort of Veterans with diabetes.
    Floyd JS; Blondon M; Moore KP; Boyko EJ; Smith NL
    Pharmacoepidemiol Drug Saf; 2016 Apr; 25(4):467-71. PubMed ID: 26555025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying patients with diabetes and the earliest date of diagnosis in real time: an electronic health record case-finding algorithm.
    Makam AN; Nguyen OK; Moore B; Ma Y; Amarasingham R
    BMC Med Inform Decis Mak; 2013 Aug; 13():81. PubMed ID: 23915139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.