These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 32737297)
1. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Zhang L; Qian Y; Feng R; Ding Y; Zu X; Zhang C; Guo X; Wang W; Yu G Nat Commun; 2020 Jul; 11(1):3843. PubMed ID: 32737297 [TBL] [Abstract][Full Text] [Related]
2. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries. Zu X; Zhang L; Qian Y; Zhang C; Yu G Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems. Zhang L; Zhao B; Zhang C; Yu G Angew Chem Int Ed Engl; 2021 Feb; 60(8):4322-4328. PubMed ID: 33170992 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes. McCormack PM; Koenig GM; Geise GM ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838 [TBL] [Abstract][Full Text] [Related]
11. High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane. Chen M; Chen H Nanoscale Adv; 2023 Jan; 5(2):435-442. PubMed ID: 36756257 [TBL] [Abstract][Full Text] [Related]
12. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Yan Y; Robinson SG; Sigman MS; Sanford MS J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480 [TBL] [Abstract][Full Text] [Related]
13. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302 [TBL] [Abstract][Full Text] [Related]
14. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440 [TBL] [Abstract][Full Text] [Related]
15. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage. Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241 [TBL] [Abstract][Full Text] [Related]
16. Dithiolene Complexes of First-Row Transition Metals for Symmetric Nonaqueous Redox Flow Batteries. Hogue RW; Armstrong CG; Toghill KE ChemSusChem; 2019 Oct; 12(19):4506-4515. PubMed ID: 31385645 [TBL] [Abstract][Full Text] [Related]
17. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Luo C; Borodin O; Ji X; Hou S; Gaskell KJ; Fan X; Chen J; Deng T; Wang R; Jiang J; Wang C Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2004-2009. PubMed ID: 29440381 [TBL] [Abstract][Full Text] [Related]
18. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. Yan Y; Sitaula P; Odom SA; Vaid TP ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441 [TBL] [Abstract][Full Text] [Related]
19. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries. Steen JS; Nuismer JL; Eiva V; Wiglema AET; Daub N; Hjelm J; Otten E J Am Chem Soc; 2022 Mar; 144(11):5051-5058. PubMed ID: 35258956 [TBL] [Abstract][Full Text] [Related]
20. Hybrid Electrolyte Engineering Enables Safe and Wide-Temperature Redox Flow Batteries. Zhang L; Yu G Angew Chem Int Ed Engl; 2021 Jun; 60(27):15028-15035. PubMed ID: 33914394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]