These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32737387)

  • 21. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury.
    Yick LW; So KF; Cheung PT; Wu WT
    J Neurotrauma; 2004 Jul; 21(7):932-43. PubMed ID: 15307905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model.
    Kim BG; Kang YM; Phi JH; Kim YH; Hwang DH; Choi JY; Ryu S; Elastal AE; Paek SH; Wang KC; Lee SH; Kim SU; Yoon BW
    Cytotherapy; 2010 Oct; 12(6):841-5. PubMed ID: 20629485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury.
    Burnside ER; De Winter F; Didangelos A; James ND; Andreica EC; Layard-Horsfall H; Muir EM; Verhaagen J; Bradbury EJ
    Brain; 2018 Aug; 141(8):2362-2381. PubMed ID: 29912283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury.
    Führmann T; Anandakumaran PN; Payne SL; Pakulska MM; Varga BV; Nagy A; Tator C; Shoichet MS
    Biomed Mater; 2018 Feb; 13(2):024103. PubMed ID: 29083317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats.
    Janzadeh A; Sarveazad A; Yousefifard M; Dameni S; Samani FS; Mokhtarian K; Nasirinezhad F
    Neuropeptides; 2017 Oct; 65():90-99. PubMed ID: 28716393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury.
    Novotna I; Slovinska L; Vanicky I; Cizek M; Radonak J; Cizkova D
    Cell Mol Neurobiol; 2011 Nov; 31(8):1129-39. PubMed ID: 21630006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transplantation of neural progenitor cells in chronic spinal cord injury.
    Jin Y; Bouyer J; Shumsky JS; Haas C; Fischer I
    Neuroscience; 2016 Apr; 320():69-82. PubMed ID: 26852702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics.
    Alluin O; Delivet-Mongrain H; Gauthier MK; Fehlings MG; Rossignol S; Karimi-Abdolrezaee S
    PLoS One; 2014; 9(10):e111072. PubMed ID: 25350665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ChABC-loaded PLGA nanoparticles: A comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury.
    Azizi M; Farahmandghavi F; Joghataei MT; Zandi M; Imani M; Bakhtiari M; Omidian H
    Int J Pharm; 2020 Mar; 577():119037. PubMed ID: 31953081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury.
    Colello RJ; Chow WN; Bigbee JW; Lin C; Dalton D; Brown D; Jha BS; Mathern BE; Lee KD; Simpson DG
    J Tissue Eng Regen Med; 2016 Aug; 10(8):656-68. PubMed ID: 23950083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local versus distal transplantation of human neural stem cells following chronic spinal cord injury.
    Cheng I; Githens M; Smith RL; Johnston TR; Park DY; Stauff MP; Salari N; Tileston KR; Kharazi AI
    Spine J; 2016 Jun; 16(6):764-9. PubMed ID: 26698654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat.
    Shields LB; Zhang YP; Burke DA; Gray R; Shields CB
    Surg Neurol; 2008 Jun; 69(6):568-77; discussion 577. PubMed ID: 18486695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles.
    Guo S; Redenski I; Levenberg S
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury.
    Carter LM; Starkey ML; Akrimi SF; Davies M; McMahon SB; Bradbury EJ
    J Neurosci; 2008 Dec; 28(52):14107-20. PubMed ID: 19109493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chondroitinase ABC promotes functional recovery after spinal cord injury.
    Bradbury EJ; Moon LD; Popat RJ; King VR; Bennett GS; Patel PN; Fawcett JW; McMahon SB
    Nature; 2002 Apr; 416(6881):636-40. PubMed ID: 11948352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Inhibitory effect of chondroitinase ABC on ephrin A4 expression after spinal cord injury in rats].
    Liu XM; Kang HY; Xu JW; Sun DH
    Sheng Li Xue Bao; 2011 Dec; 63(6):498-504. PubMed ID: 22193443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord.
    Lien BV; Tuszynski MH; Lu P
    Exp Neurol; 2019 Apr; 314():46-57. PubMed ID: 30653967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chondroitinase ABC-mediated plasticity of spinal sensory function.
    Cafferty WB; Bradbury EJ; Lidierth M; Jones M; Duffy PJ; Pezet S; McMahon SB
    J Neurosci; 2008 Nov; 28(46):11998-2009. PubMed ID: 19005065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.