These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32737387)
41. Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Yick LW; Cheung PT; So KF; Wu W Exp Neurol; 2003 Jul; 182(1):160-8. PubMed ID: 12821386 [TBL] [Abstract][Full Text] [Related]
42. Antisense vimentin cDNA combined with chondroitinase ABC promotes axon regeneration and functional recovery following spinal cord injury in rats. Xia Y; Yan Y; Xia H; Zhao T; Chu W; Hu S; Feng H; Lin J Neurosci Lett; 2015 Mar; 590():74-9. PubMed ID: 25641132 [TBL] [Abstract][Full Text] [Related]
43. Optimal Preclinical Conditions for Using Adult Human Multipotent Neural Cells in the Treatment of Spinal Cord Injury. Won JS; Yeon JY; Pyeon HJ; Noh YJ; Hwang JY; Kim CK; Nam H; Lee KH; Lee SH; Joo KM Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806636 [TBL] [Abstract][Full Text] [Related]
44. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Nagoshi N; Khazaei M; Ahlfors JE; Ahuja CS; Nori S; Wang J; Shibata S; Fehlings MG Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415 [TBL] [Abstract][Full Text] [Related]
45. [Effect of chondroitinase ABC on growth associate protein 43 and glial fibrillary acidic protein after spinal cord injury in rats]. Xu J; Sun D; Liu X; Liu H; Hua X; Chen X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Oct; 24(10):1212-6. PubMed ID: 21046809 [TBL] [Abstract][Full Text] [Related]
46. Combining Constitutively Active Rheb Expression and Chondroitinase Promotes Functional Axonal Regeneration after Cervical Spinal Cord Injury. Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Côté MP; Tom VJ Mol Ther; 2017 Dec; 25(12):2715-2726. PubMed ID: 28967557 [TBL] [Abstract][Full Text] [Related]
47. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. Cheng CH; Lin CT; Lee MJ; Tsai MJ; Huang WH; Huang MC; Lin YL; Chen CJ; Huang WC; Cheng H PLoS One; 2015; 10(9):e0138705. PubMed ID: 26393921 [TBL] [Abstract][Full Text] [Related]
48. Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Piltti KM; Salazar DL; Uchida N; Cummings BJ; Anderson AJ Stem Cells Transl Med; 2013 Mar; 2(3):204-16. PubMed ID: 23413374 [TBL] [Abstract][Full Text] [Related]
49. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Bradbury EJ; Carter LM Brain Res Bull; 2011 Mar; 84(4-5):306-16. PubMed ID: 20620201 [TBL] [Abstract][Full Text] [Related]
51. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury. Lu P; Graham L; Wang Y; Wu D; Tuszynski M J Vis Exp; 2014 Jul; (89):e50641. PubMed ID: 25145787 [TBL] [Abstract][Full Text] [Related]
52. Effect of combined chondroitinase ABC and hyperbaric oxygen therapy in a rat model of spinal cord injury. Liu X; Wang J; Li G; Lv H Mol Med Rep; 2018 Jul; 18(1):25-30. PubMed ID: 29749479 [TBL] [Abstract][Full Text] [Related]
53. Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals. Kutikov AB; Moore SW; Layer RT; Podell PE; Sridhar N; Santamaria AJ; Aimetti AA; Hofstetter CP; Ulich TR; Guest JD Neurosurgery; 2019 Oct; 85(4):560-573. PubMed ID: 30169668 [TBL] [Abstract][Full Text] [Related]
54. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats. Liu A; Kang S; Yu P; Shi L; Zhou L Neurosci Lett; 2020 Sep; 735():135201. PubMed ID: 32585253 [TBL] [Abstract][Full Text] [Related]
55. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. Houle JD; Tom VJ; Mayes D; Wagoner G; Phillips N; Silver J J Neurosci; 2006 Jul; 26(28):7405-15. PubMed ID: 16837588 [TBL] [Abstract][Full Text] [Related]
56. Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. Hyatt AJ; Wang D; Kwok JC; Fawcett JW; Martin KR J Control Release; 2010 Oct; 147(1):24-9. PubMed ID: 20620180 [TBL] [Abstract][Full Text] [Related]
57. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. Ramadan WS; Abdel-Hamid GA; Al-Karim S; Zakar NAMB; Elassouli MZ J Biosci; 2018 Dec; 43(5):897-909. PubMed ID: 30541950 [TBL] [Abstract][Full Text] [Related]
58. Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats. Xia Y; Zhao T; Li J; Li L; Hu R; Hu S; Feng H; Lin J Biochem Biophys Res Commun; 2008 Dec; 377(2):562-566. PubMed ID: 18930033 [TBL] [Abstract][Full Text] [Related]
59. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms. Pajer K; Bellák T; Redl H; Nógrádi A J Neurotrauma; 2019 Nov; 36(21):2977-2990. PubMed ID: 31111776 [TBL] [Abstract][Full Text] [Related]
60. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Webber DJ; Bradbury EJ; McMahon SB; Minger SL Regen Med; 2007 Nov; 2(6):929-45. PubMed ID: 18034631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]