These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32737465)

  • 1. Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy.
    Diel EE; Lichtman JW; Richardson DS
    Nat Protoc; 2020 Sep; 15(9):2773-2784. PubMed ID: 32737465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of index-mismatch-induced spherical aberration in pump--probe microscopic image formation.
    Fwu PT; Wang PH; Tung CK; Dong CY
    Appl Opt; 2005 Jul; 44(20):4220-7. PubMed ID: 16045208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.
    Iwaniuk D; Rastogi P; Hack E
    Opt Express; 2011 Sep; 19(20):19407-14. PubMed ID: 21996881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberration correction considering curved sample surface shape for non-contact two-photon excitation microscopy with spatial light modulator.
    Matsumoto N; Konno A; Inoue T; Okazaki S
    Sci Rep; 2018 Jun; 8(1):9252. PubMed ID: 29915203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1992 Jan; 9(1):154-66. PubMed ID: 1738047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM.
    Masson A; Escande P; Frongia C; Clouvel G; Ducommun B; Lorenzo C
    Sci Rep; 2015 Nov; 5():16898. PubMed ID: 26576666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids.
    Chisholm K; Miles D; Rankine L; Oldham M
    Med Phys; 2015 May; 42(5):2607-14. PubMed ID: 25979052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing.
    Kner P; Sedat JW; Agard DA; Kam Z
    J Microsc; 2010 Feb; 237(2):136-47. PubMed ID: 20096044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator.
    Matsumoto N; Inoue T; Matsumoto A; Okazaki S
    Biomed Opt Express; 2015 Jul; 6(7):2575-87. PubMed ID: 26203383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fact and artefact in confocal microscopy.
    Watson TF
    Adv Dent Res; 1997 Nov; 11(4):433-41. PubMed ID: 9470501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking.
    Deng Y; Shaevitz JW
    Appl Opt; 2009 Apr; 48(10):1886-90. PubMed ID: 19340142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography.
    Zhou N; Li J; Sun J; Zhang R; Bai Z; Zhou S; Chen Q; Zuo C
    Opt Lett; 2022 Feb; 47(4):969-972. PubMed ID: 35167571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy.
    McGorty R; Schnitzbauer J; Zhang W; Huang B
    Opt Lett; 2014 Jan; 39(2):275-8. PubMed ID: 24562125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a standing-wave fluorescence microscope with high nodal plane flatness.
    Freimann R; Pentz S; Hörler H
    J Microsc; 1997 Sep; 187(Pt 3):193-200. PubMed ID: 9351235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two simple criteria to estimate an objective's performance when imaging in non design tissue clearing solutions.
    Asteriti S; Ricci V; Cangiano L
    J Neurosci Methods; 2020 Feb; 332():108564. PubMed ID: 31863805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional bi-functional refractive index and fluorescence microscopy (BRIEF).
    Xue Y; Ren D; Waller L
    Biomed Opt Express; 2022 Nov; 13(11):5900-5908. PubMed ID: 36733730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Publisher Correction: Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy.
    Diel EE; Lichtman JW; Richardson DS
    Nat Protoc; 2021 Jul; 16(7):3736. PubMed ID: 33268884
    [No Abstract]   [Full Text] [Related]  

  • 19. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Model-based approach for microvasculature structure distortion correction in two-photon fluorescence microscopy images.
    Dao L; Glancy B; Lucotte B; Chang LC; Balaban RS; Hsu LY
    J Microsc; 2015 Nov; 260(2):180-93. PubMed ID: 26224257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.