These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32737554)

  • 21. Recent developments in microfluidics for cell studies.
    Xiong B; Ren K; Shu Y; Chen Y; Shen B; Wu H
    Adv Mater; 2014 Aug; 26(31):5525-32. PubMed ID: 24536032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.
    Krujatz F; Lode A; Seidel J; Bley T; Gelinsky M; Steingroewer J
    N Biotechnol; 2017 Oct; 39(Pt B):222-231. PubMed ID: 28890405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics for microalgal biotechnology.
    Ozdalgic B; Ustun M; Dabbagh SR; Haznedaroglu BZ; Kiraz A; Tasoglu S
    Biotechnol Bioeng; 2021 Apr; 118(4):1545-1563. PubMed ID: 33410126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
    Hengoju S; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biosens Bioelectron; 2022 Mar; 200():113910. PubMed ID: 34974260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics-Enabled Enzyme Activity Measurement in Single Cells.
    Tesauro C; Frøhlich R; Stougaard M; Ho YP; Knudsen BR
    Methods Mol Biol; 2015; 1346():209-19. PubMed ID: 26542724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-free single-cell isolation enabled by microfluidic impact printing and real-time cellular recognition.
    Wang Y; Wang X; Pan T; Li B; Chu J
    Lab Chip; 2021 Sep; 21(19):3695-3706. PubMed ID: 34581393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic single cell analysis: from promise to practice.
    Lecault V; White AK; Singhal A; Hansen CL
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):381-90. PubMed ID: 22525493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Microfluidics Applied to Single Cell Operation.
    Zhu XD; Chu J; Wang YH
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29220116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidics in Biotechnology: Quo Vadis.
    Winkler S; Grünberger A; Bahnemann J
    Adv Biochem Eng Biotechnol; 2022; 179():355-380. PubMed ID: 33495924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying phenotypes in single cells using droplet microfluidics.
    Lyu F; Blauch LR; Tang SKY
    Methods Cell Biol; 2018; 148():133-159. PubMed ID: 30473067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic single-cell scale-down systems: introduction, application, and future challenges.
    Täuber S; Grünberger A
    Curr Opin Biotechnol; 2023 Jun; 81():102915. PubMed ID: 36871470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Single-Cell Omics Analysis.
    Xu X; Wang J; Wu L; Guo J; Song Y; Tian T; Wang W; Zhu Z; Yang C
    Small; 2020 Mar; 16(9):e1903905. PubMed ID: 31544338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
    Gruenberger A; Probst C; Heyer A; Wiechert W; Frunzke J; Kohlheyer D
    J Vis Exp; 2013 Dec; (82):50560. PubMed ID: 24336165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and application of a cultivation platform for mammalian suspension cell lines with single-cell resolution.
    Schmitz J; Täuber S; Westerwalbesloh C; von Lieres E; Noll T; Grünberger A
    Biotechnol Bioeng; 2021 Feb; 118(2):992-1005. PubMed ID: 33200818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in the physics of microfluidics and related biotechnological applications.
    Tabeling P
    Curr Opin Biotechnol; 2014 Feb; 25():129-34. PubMed ID: 24484891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments.
    Hassanzadeh-Barforoushi A; Warkiani ME; Gallego-Ortega D; Liu G; Barber T
    Biosens Bioelectron; 2020 May; 155():112113. PubMed ID: 32217335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell assays using integrated continuous-flow microfluidics.
    Ng EX; Hsu MN; Sun G; Chen CH
    Methods Enzymol; 2019; 628():59-94. PubMed ID: 31668236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.