BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32737751)

  • 1. Ion Transport and Radioresistance.
    Roth B; Huber SM
    Rev Physiol Biochem Pharmacol; 2022; 183():217-249. PubMed ID: 32737751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium Channels in Cancer.
    Ganser K; Klumpp L; Bischof H; Lukowski R; Eckert F; Huber SM
    Handb Exp Pharmacol; 2021; 267():253-275. PubMed ID: 33864122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of ion channels in ionizing radiation-induced cell death.
    Huber SM; Butz L; Stegen B; Klumpp L; Klumpp D; Eckert F
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2657-64. PubMed ID: 25445673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionizing radiation, ion transports, and radioresistance of cancer cells.
    Huber SM; Butz L; Stegen B; Klumpp D; Braun N; Ruth P; Eckert F
    Front Physiol; 2013; 4():212. PubMed ID: 23966948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia.
    Hlouschek J; Ritter V; Wirsdörfer F; Klein D; Jendrossek V; Matschke J
    Cancer Lett; 2018 Dec; 439():24-38. PubMed ID: 30205167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion.
    Hansel C; Hlouschek J; Xiang K; Melnikova M; Thomale J; Helleday T; Jendrossek V; Matschke J
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy.
    Yu Y; Yu J; Ge S; Su Y; Fan X
    Int J Biol Sci; 2023; 19(3):811-828. PubMed ID: 36778122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells.
    Shi Z; Hu C; Zheng X; Sun C; Li Q
    Exp Hematol Oncol; 2024 May; 13(1):55. PubMed ID: 38778409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mitochondrial Citrate Carrier (SLC25A1) Sustains Redox Homeostasis and Mitochondrial Metabolism Supporting Radioresistance of Cancer Cells With Tolerance to Cycling Severe Hypoxia.
    Hlouschek J; Hansel C; Jendrossek V; Matschke J
    Front Oncol; 2018; 8():170. PubMed ID: 29888201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of different response to ionizing irradiation in isogenic head and neck cancer cell lines.
    Todorovic V; Prevc A; Zakelj MN; Savarin M; Brozic A; Groselj B; Strojan P; Cemazar M; Sersa G
    Radiat Oncol; 2019 Nov; 14(1):214. PubMed ID: 31775835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer.
    Nguyen L; Dobiasch S; Schneider G; Schmid RM; Azimzadeh O; Kanev K; Buschmann D; Pfaffl MW; Bartzsch S; Schmid TE; Schilling D; Combs SE
    Radiother Oncol; 2021 Jun; 159():265-276. PubMed ID: 33839203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the mechanisms of extreme radioresistance in prokaryotes: Lessons from nature.
    Pavlopoulou A; Savva GD; Louka M; Bagos PG; Vorgias CE; Michalopoulos I; Georgakilas AG
    Mutat Res Rev Mutat Res; 2016; 767():92-107. PubMed ID: 27036069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.
    Bao S; Wu Q; McLendon RE; Hao Y; Shi Q; Hjelmeland AB; Dewhirst MW; Bigner DD; Rich JN
    Nature; 2006 Dec; 444(7120):756-60. PubMed ID: 17051156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia enhances the radioresistance of mouse mesenchymal stromal cells.
    Sugrue T; Lowndes NF; Ceredig R
    Stem Cells; 2014 Aug; 32(8):2188-200. PubMed ID: 24578291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors.
    Eckert F; Zwirner K; Boeke S; Thorwarth D; Zips D; Huber SM
    Front Immunol; 2019; 10():407. PubMed ID: 30930892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells.
    Zhou W; Sun M; Li GH; Wu YZ; Wang Y; Jin F; Zhang YY; Yang L; Wang DL
    Oncol Rep; 2013 Oct; 30(4):1793-801. PubMed ID: 23846672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low production of reactive oxygen species and high DNA repair: mechanism of radioresistance of prostate cancer stem cells.
    Kim YS; Kang MJ; Cho YM
    Anticancer Res; 2013 Oct; 33(10):4469-74. PubMed ID: 24123017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.
    Maier P; Hartmann L; Wenz F; Herskind C
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26784176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Suppression of Transketolase-Like Protein 1 (TKTL1) Sensitizes Glioma Cells to Hypoxia and Ionizing Radiation.
    Heller S; Maurer GD; Wanka C; Hofmann U; Luger AL; Bruns I; Steinbach JP; Rieger J
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30044385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K
    Stegen B; Klumpp L; Misovic M; Edalat L; Eckert M; Klumpp D; Ruth P; Huber SM
    Eur Biophys J; 2016 Oct; 45(7):585-598. PubMed ID: 27165704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.