These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32737758)

  • 1. High-intensity exercise training induces mitonuclear imbalance and activates the mitochondrial unfolded protein response in the skeletal muscle of aged mice.
    Cordeiro AV; Peruca GF; Braga RR; Brícola RS; Lenhare L; Silva VRR; Anaruma CP; Katashima CK; Crisol BM; Barbosa LT; Simabuco FM; da Silva ASR; Cintra DE; de Moura LP; Pauli JR; Ropelle ER
    Geroscience; 2021 Jun; 43(3):1513-1518. PubMed ID: 32737758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic Exercise Training Induces the Mitonuclear Imbalance and UPRmt in the Skeletal Muscle of Aged Mice.
    Cordeiro AV; Brícola RS; Braga RR; Lenhare L; Silva VRR; Anaruma CP; Katashima CK; Crisol BM; Simabuco FM; Silva ASR; Cintra DE; Moura LP; Pauli JR; Ropelle ER
    J Gerontol A Biol Sci Med Sci; 2020 Nov; 75(12):2258-2261. PubMed ID: 32173728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of high-temperature requirement protein A2 protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia.
    Zhou H; Yuan D; Gao W; Tian J; Sun H; Yu S; Wang J; Sun L
    IUBMB Life; 2020 Aug; 72(8):1659-1679. PubMed ID: 32353215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPR
    Braga RR; Crisol BM; Brícola RS; Sant'ana MR; Nakandakari SCBR; Costa SO; Prada PO; da Silva ASR; Moura LP; Pauli JR; Cintra DE; Ropelle ER
    Sci Rep; 2021 Feb; 11(1):3813. PubMed ID: 33589652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells.
    Dahlmans D; Houzelle A; Andreux P; Wang X; Jörgensen JA; Moullan N; Daemen S; Kersten S; Auwerx J; Hoeks J
    J Cell Physiol; 2019 May; 234(5):6601-6610. PubMed ID: 30417335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial ROS Produced by Skeletal Muscle Mitochondria Promote the Decisive Signal for UPRmt Activation.
    Wang Z; Bo H; Song Y; Li C; Zhang Y
    Biomed Res Int; 2022; 2022():7436577. PubMed ID: 35237690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise Induces an Augmented Skeletal Muscle Mitochondrial Unfolded Protein Response in a Mouse Model of Obesity Produced by a High-Fat Diet.
    Apablaza P; Bórquez JC; Mendoza R; Silva M; Tapia G; Espinosa A; Troncoso R; Videla LA; Juretić N; Del Campo A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M
    FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragile lifespan expansion by dietary mitohormesis in C. elegans.
    Tauffenberger A; Vaccaro A; Parker JA
    Aging (Albany NY); 2016 Jan; 8(1):50-61. PubMed ID: 26764305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension.
    Fiorenza M; Gunnarsson TP; Ehlers TS; Bangsbo J
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13208. PubMed ID: 30339318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of High-Temperature Requirement Protein A2 Protease Activity Represses Myogenic Differentiation via UPRmt.
    Sun H; Shen L; Zhang P; Lin F; Ma J; Wu Y; Yu H; Sun L
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model.
    Li FH; Sun L; Zhu M; Li T; Gao HE; Wu DS; Zhu L; Duan R; Liu TC
    Exp Gerontol; 2018 Nov; 113():150-162. PubMed ID: 30308288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.
    Wyckelsma VL; Levinger I; McKenna MJ; Formosa LE; Ryan MT; Petersen AC; Anderson MJ; Murphy RM
    J Physiol; 2017 Jun; 595(11):3345-3359. PubMed ID: 28251664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes.
    Zheng L; Rao Z; Guo Y; Chen P; Xiao W
    Front Endocrinol (Lausanne); 2020; 11():561. PubMed ID: 32922365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells.
    Al-Furoukh N; Ianni A; Nolte H; Hölper S; Krüger M; Wanrooij S; Braun T
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2580-91. PubMed ID: 26142927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling the effect of dietary restriction on mitochondrial function using recombinant inbred mice.
    Mulvey L; Sands WA; Salin K; Carr AE; Selman C
    Mol Cell Endocrinol; 2017 Nov; 455():41-53. PubMed ID: 27597651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work.
    MacInnis MJ; Zacharewicz E; Martin BJ; Haikalis ME; Skelly LE; Tarnopolsky MA; Murphy RM; Gibala MJ
    J Physiol; 2017 May; 595(9):2955-2968. PubMed ID: 27396440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle.
    Tamura Y; Matsunaga Y; Kitaoka Y; Hatta H
    J Gerontol A Biol Sci Med Sci; 2017 Mar; 72(3):299-308. PubMed ID: 27071782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical exercise elicits UPR
    Gaspar RS; Katashima CK; Crisol BM; Carneiro FS; Sampaio I; Silveira LDR; Silva ASRD; Cintra DE; Pauli JR; Ropelle ER
    Mol Metab; 2023 Dec; 78():101816. PubMed ID: 37821006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats.
    Li FH; Sun L; Wu DS; Gao HE; Min Z
    Aging (Albany NY); 2019 Jun; 11(12):4159-4182. PubMed ID: 31241467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.