These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 32737807)

  • 1. Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach.
    Han SR; Jang SM; Chi YM; Kim B; Jung SH; Lee YM; Uetake J; Lee JH; Park H; Oh TJ
    Genes Genomics; 2020 Sep; 42(9):1087-1096. PubMed ID: 32737807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequencing of Shigella sp. PAMC 28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation.
    Han SR; Kim DW; Kim B; Chi YM; Kang S; Park H; Jung SH; Lee JH; Oh TJ
    Microb Pathog; 2019 Dec; 137():103759. PubMed ID: 31560973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov.
    Pal R; Bala S; Dadhwal M; Kumar M; Dhingra G; Prakash O; Prabagaran SR; Shivaji S; Cullum J; Holliger C; Lal R
    Int J Syst Evol Microbiol; 2005 Sep; 55(Pt 5):1965-1972. PubMed ID: 16166696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome analysis reveals the evolution of chloroacetanilide herbicide mineralization in Sphingomonas wittichii DC-6.
    Cheng M; Yan X; He J; Qiu J; Chen Q
    Arch Microbiol; 2019 Sep; 201(7):907-918. PubMed ID: 30997539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways.
    Verma H; Kumar R; Oldach P; Sangwan N; Khurana JP; Gilbert JA; Lal R
    BMC Genomics; 2014 Nov; 15(1):1014. PubMed ID: 25418849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer.
    Zhao Q; Yue S; Bilal M; Hu H; Wang W; Zhang X
    Sci Total Environ; 2017 Dec; 609():1238-1247. PubMed ID: 28787798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Comparison Identifies Different Bacillus Species in a Bast Fibre-Retting Bacterial Consortium and Provides Insights into Pectin Degrading Genes.
    Datta S; Saha D; Chattopadhyay L; Majumdar B
    Sci Rep; 2020 May; 10(1):8169. PubMed ID: 32424209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon.
    Kim CC; Lunken GR; Kelly WJ; Patchett ML; Jordens Z; Tannock GW; Sims IM; Bell TJ; Hedderley D; Henrissat B; Rosendale DI
    ISME J; 2019 Jun; 13(6):1437-1456. PubMed ID: 30728469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete genome sequence of Rhodoferax sp. PAMC 29310 from a marine sediment of the East Siberian Sea.
    Lee YM; Park Y; Kim H; Shin SC
    Mar Genomics; 2022 Apr; 62():100891. PubMed ID: 35246303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation.
    Han SR; Kim B; Jang JH; Park H; Oh TJ
    BMC Genomics; 2021 Jun; 22(1):403. PubMed ID: 34078272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov.
    Chen H; Jogler M; Rohde M; Klenk HP; Busse HJ; Tindall BJ; Spröer C; Overmann J
    Int J Syst Evol Microbiol; 2013 Feb; 63(Pt 2):735-743. PubMed ID: 22561591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species.
    Gupta S; Han SR; Kim B; Lee CM; Oh TJ
    Genes Genomics; 2022 Jun; 44(6):733-746. PubMed ID: 35486322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Genomic Study of Polar Lichen-Associated Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 Reveals the Presence of Polysaccharide-Degrading Ability Based on Habitat.
    Ghimire N; Han SR; Kim B; Park H; Lee JH; Oh TJ
    Curr Microbiol; 2020 Oct; 77(10):2940-2952. PubMed ID: 32681312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family.
    Gan HM; Gan HY; Ahmad NH; Aziz NA; Hudson AO; Savka MA
    Front Cell Infect Microbiol; 2014; 4():188. PubMed ID: 25621282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.
    Aylward FO; McDonald BR; Adams SM; Valenzuela A; Schmidt RA; Goodwin LA; Woyke T; Currie CR; Suen G; Poulsen M
    Appl Environ Microbiol; 2013 Jun; 79(12):3724-33. PubMed ID: 23563954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
    Park YJ; Jeong YU; Kong WS
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30104475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil.
    Bala K; Sharma P; Lal R
    Int J Syst Evol Microbiol; 2010 Feb; 60(Pt 2):429-433. PubMed ID: 19651722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata.
    Boss BL; Wanees AE; Zaslow SJ; Normile TG; Izquierdo JA
    BMC Genomics; 2022 Jul; 23(1):508. PubMed ID: 35831788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete genome sequence of Maribacter sp. T28, a polysaccharide-degrading marine flavobacteria.
    Zhan P; Tang K; Chen X; Yu L
    J Biotechnol; 2017 Oct; 259():1-5. PubMed ID: 28811216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil.
    Singh A; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):162-6. PubMed ID: 19126742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.