These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32738151)
21. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Burgos-Rubio CN; Okos MR; Wankat PC Biotechnol Prog; 2000; 16(3):305-14. PubMed ID: 10835228 [TBL] [Abstract][Full Text] [Related]
22. Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid. Bai DM; Wei Q; Yan ZH; Zhao XM; Li XG; Xu SM Biotechnol Lett; 2003 Nov; 25(21):1833-5. PubMed ID: 14677707 [TBL] [Abstract][Full Text] [Related]
23. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Garde A; Jonsson G; Schmidt AS; Ahring BK Bioresour Technol; 2002 Feb; 81(3):217-23. PubMed ID: 11800488 [TBL] [Abstract][Full Text] [Related]
24. Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza. Petrova P; Emanuilova M; Petrov K Z Naturforsch C J Biosci; 2010; 65(3-4):218-24. PubMed ID: 20469641 [TBL] [Abstract][Full Text] [Related]
25. Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei. Moon SK; Lee J; Song H; Cho JH; Choi GW; Seung D Bioprocess Biosyst Eng; 2013 May; 36(5):547-54. PubMed ID: 22907566 [TBL] [Abstract][Full Text] [Related]
26. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Hujanen M; Linko S; Linko YY; Leisola M Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):126-30. PubMed ID: 11499919 [TBL] [Abstract][Full Text] [Related]
27. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Kuo YC; Yuan SF; Wang CA; Huang YJ; Guo GL; Hwang WS Bioresour Technol; 2015 Dec; 198():651-7. PubMed ID: 26433790 [TBL] [Abstract][Full Text] [Related]
28. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. Fu Y; Sun X; Zhu H; Jiang R; Luo X; Yin L World J Microbiol Biotechnol; 2018 May; 34(6):74. PubMed ID: 29786118 [TBL] [Abstract][Full Text] [Related]
29. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A; Yang ST Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781 [TBL] [Abstract][Full Text] [Related]
30. L-lactic acid production by Lactobacillus rhamnosus ATCC 10863. Senedese AL; Maciel Filho R; Maciel MR ScientificWorldJournal; 2015; 2015():501029. PubMed ID: 25922852 [TBL] [Abstract][Full Text] [Related]
31. Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Coban HB; Demirci A Bioprocess Biosyst Eng; 2016 Feb; 39(2):323-30. PubMed ID: 26658984 [TBL] [Abstract][Full Text] [Related]
32. Genotypic and phenotypic diversity among Lactobacillus plantarum and Lactobacillus pentosus isolated from industrial scale cucumber fermentations. Pérez-Díaz IM; Johanningsmeier SD; Anekella K; Pagán-Medina CG; Méndez-Sandoval L; Arellano C; Price R; Daughtry KV; Borges M; Bream C; Connelly L; Dieck SE; Levi MT; McMurtrie EK; Smith RE; Theora JC; Wendland P; Gómez-Rodríguez F; Arroyo-López FN Food Microbiol; 2021 Apr; 94():103652. PubMed ID: 33279077 [TBL] [Abstract][Full Text] [Related]
33. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
34. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
35. A simple downstream processing protocol for the recovery of lactic acid from the fermentation broth. Kumar S; Yadav N; Nain L; Khare SK Bioresour Technol; 2020 Dec; 318():124260. PubMed ID: 33091689 [TBL] [Abstract][Full Text] [Related]
36. The use of a D-optimal design to model the effects of temperature, NaCl, type and acid concentration on Lactobacillus pentosus IGLAC01. López FN; Quintana MC; Fernández AG J Appl Microbiol; 2006 Oct; 101(4):913-26. PubMed ID: 16968303 [TBL] [Abstract][Full Text] [Related]
37. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid. Tirpanalan Ö; Reisinger M; Smerilli M; Huber F; Neureiter M; Kneifel W; Novalin S Bioresour Technol; 2015 Mar; 180():242-9. PubMed ID: 25616238 [TBL] [Abstract][Full Text] [Related]
38. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Ohkouchi Y; Inoue Y Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483 [TBL] [Abstract][Full Text] [Related]
39. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Xu K; Xu P Bioresour Technol; 2014 Feb; 153():23-9. PubMed ID: 24333698 [TBL] [Abstract][Full Text] [Related]
40. Semi-industrial scale (30 m Fu X; Wang Y; Wang J; Garza E; Manow R; Zhou S J Ind Microbiol Biotechnol; 2017 Feb; 44(2):221-228. PubMed ID: 27900494 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]