These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32738356)
1. Mitochondrial threshold for H Voituron Y; Boël M; Roussel D Mitochondrion; 2020 Sep; 54():85-91. PubMed ID: 32738356 [TBL] [Abstract][Full Text] [Related]
2. Does high mitochondrial efficiency carry an oxidative cost? The case of the African pygmy mouse (Mus mattheyi). Boël M; Veyrunes F; Durieux AC; Freyssenet D; Voituron Y; Roussel D Comp Biochem Physiol A Mol Integr Physiol; 2022 Feb; 264():111111. PubMed ID: 34748935 [TBL] [Abstract][Full Text] [Related]
3. Threshold effect in the H Roussel D; Boël M; Mortz M; Romestaing C; Duchamp C; Voituron Y J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30679239 [TBL] [Abstract][Full Text] [Related]
4. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle. Venditti P; Masullo P; Di Meo S Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170 [TBL] [Abstract][Full Text] [Related]
5. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake. Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156 [TBL] [Abstract][Full Text] [Related]
6. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse. Reilly BD; Hickey AJ; Cramp RL; Franklin CE J Exp Biol; 2014 Apr; 217(Pt 7):1087-93. PubMed ID: 24311816 [TBL] [Abstract][Full Text] [Related]
7. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria. Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433 [TBL] [Abstract][Full Text] [Related]
9. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Gnaiger E Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914 [TBL] [Abstract][Full Text] [Related]
10. Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations. Li Puma LC; Hedges M; Heckman JM; Mathias AB; Engstrom MR; Brown AB; Chicco AJ Am J Physiol Regul Integr Comp Physiol; 2020 May; 318(5):R972-R980. PubMed ID: 32233925 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic aerobic capacity correlates with greater inherent mitochondrial oxidative and H2O2 emission capacities without major shifts in myosin heavy chain isoform. Seifert EL; Bastianelli M; Aguer C; Moffat C; Estey C; Koch LG; Britton SL; Harper ME J Appl Physiol (1985); 2012 Nov; 113(10):1624-34. PubMed ID: 22995392 [TBL] [Abstract][Full Text] [Related]
12. Effect of skeletal muscle mitochondrial phenotype on H Kamunde C; Wijayakulathilake Y; Okoye C; Chinnappareddy N; Kalvani Z; Tetteh P; van den Heuvel M; Sappal R; Stevens D Comp Biochem Physiol B Biochem Mol Biol; 2024; 271():110940. PubMed ID: 38190961 [TBL] [Abstract][Full Text] [Related]
13. Endurance training increases the efficiency of rat skeletal muscle mitochondria. Zoladz JA; Koziel A; Woyda-Ploszczyca A; Celichowski J; Jarmuszkiewicz W Pflugers Arch; 2016 Oct; 468(10):1709-24. PubMed ID: 27568192 [TBL] [Abstract][Full Text] [Related]
14. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers. Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881 [TBL] [Abstract][Full Text] [Related]
15. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Anderson EJ; Neufer PD Am J Physiol Cell Physiol; 2006 Mar; 290(3):C844-51. PubMed ID: 16251473 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. Tonkonogi M; Walsh B; Svensson M; Sahlin K J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627 [TBL] [Abstract][Full Text] [Related]
18. Vitamin E reduces cold-induced oxidative stress in rat skeletal muscle decreasing mitochondrial H(2)O(2) release and tissue susceptibility to oxidants. Venditti P; Di Stefano L; Di Meo S Redox Rep; 2009; 14(4):167-75. PubMed ID: 19695124 [TBL] [Abstract][Full Text] [Related]
19. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H Petrick HL; Pignanelli C; Barbeau PA; Churchward-Venne TA; Dennis KMJH; van Loon LJC; Burr JF; Goossens GH; Holloway GP J Physiol; 2019 Aug; 597(15):3985-3997. PubMed ID: 31194254 [TBL] [Abstract][Full Text] [Related]
20. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Doerrier C; Garcia-Souza LF; Krumschnabel G; Wohlfarter Y; Mészáros AT; Gnaiger E Methods Mol Biol; 2018; 1782():31-70. PubMed ID: 29850993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]