These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 3273848)

  • 21. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS).
    Langguth B; Eichhammer P; Zowe M; Landgrebe M; Binder H; Sand P; Hajak G
    Neurophysiol Clin; 2008 Oct; 38(5):289-95. PubMed ID: 18940616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal lobe recruitment systems.
    Caruthers RP
    Electroencephalogr Clin Neurophysiol; 1969 Mar; 26(3):336. PubMed ID: 4183454
    [No Abstract]   [Full Text] [Related]  

  • 23. Development and plasticity of thalamocortical systems.
    Jabaudon D; López Bendito G
    Eur J Neurosci; 2012 May; 35(10):1522-3. PubMed ID: 22606997
    [No Abstract]   [Full Text] [Related]  

  • 24. Sleep oscillations and their blockage by activating systems.
    Steriade M
    J Psychiatry Neurosci; 1994 Nov; 19(5):354-8. PubMed ID: 7803369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation in the corticothalamic loop: computational prospects of tuning the senses.
    Hillenbrand U; van Hemmen JL
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1859-67. PubMed ID: 12626019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Touching sounds: thalamocortical plasticity and the neural basis of multisensory integration.
    Naumer MJ; van den Bosch JJ
    J Neurophysiol; 2009 Jul; 102(1):7-8. PubMed ID: 19403745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Motor and electrographic effects of the stimulation of nuclei of the amygdaliform complex].
    Vediaev FP
    Fiziol Zh SSSR Im I M Sechenova; 1967 Jul; 53(7):743-51. PubMed ID: 5617087
    [No Abstract]   [Full Text] [Related]  

  • 28. Feedback inhibition controls spike transfer in hybrid thalamic circuits.
    Le Masson G; Renaud-Le Masson S; Debay D; Bal T
    Nature; 2002 Jun; 417(6891):854-8. PubMed ID: 12075353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical and subcortical potentials during goal-directed and serial goal-directed movements in humans.
    Knapp E; Schmid H; Ganglberger JA; Haider M
    Prog Brain Res; 1980; 54():66-9. PubMed ID: 7220981
    [No Abstract]   [Full Text] [Related]  

  • 30. Realistically coupled neural mass models can generate EEG rhythms.
    Sotero RC; Trujillo-Barreto NJ; Iturria-Medina Y; Carbonell F; Jimenez JC
    Neural Comput; 2007 Feb; 19(2):478-512. PubMed ID: 17206872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleep and epilepsy.
    Halász P
    Handb Clin Neurol; 2012; 107():305-22. PubMed ID: 22938979
    [No Abstract]   [Full Text] [Related]  

  • 32. Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies.
    Roberts JA; Robinson PA
    J Theor Biol; 2008 Jul; 253(1):189-201. PubMed ID: 18407293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the threshold of the recruiting responses during sleep and wakefulness: a quantitative study.
    Giaquinto S
    Arch Ital Biol; 1968 Dec; 106(4):364-78. PubMed ID: 4328235
    [No Abstract]   [Full Text] [Related]  

  • 34. Multiple roles of ephrins during the formation of thalamocortical projections: maps and more.
    Bolz J; Uziel D; Mühlfriedel S; Güllmar A; Peuckert C; Zarbalis K; Wurst W; Torii M; Levitt P
    J Neurobiol; 2004 Apr; 59(1):82-94. PubMed ID: 15007829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacologically induced alterations of cortical and subcortical evoked potentials compared with physiological changes during the awake-sleep cycle in cats.
    Herz A; Fraling F; Niedner I; Färber G
    Electroencephalogr Clin Neurophysiol; 1967; ():Suppl 26:164+. PubMed ID: 4177622
    [No Abstract]   [Full Text] [Related]  

  • 36. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness.
    Bhattacharya BS; Patterson C; Galluppi F; Durrant SJ; Furber S
    Front Neural Circuits; 2014; 8():46. PubMed ID: 24904294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thalamocortical relations and the genesis of epileptic electrographic phenomena in the forebrain of the turtle.
    Servít Z; Strejcková A
    Exp Neurol; 1972 Apr; 35(1):50-60. PubMed ID: 5026414
    [No Abstract]   [Full Text] [Related]  

  • 38. The thalamocortical network as a single slow wave-generating unit.
    Crunelli V; David F; Lőrincz ML; Hughes SW
    Curr Opin Neurobiol; 2015 Apr; 31():72-80. PubMed ID: 25233254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A method for mapping the characteristics of the connection of electrical processes in the human and animal cerebral cortex].
    Monakhov KK; Kulikov MA; Cheremushkin EA; Kurova NS; Vorob'eva TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(6):1173-6. PubMed ID: 2629410
    [No Abstract]   [Full Text] [Related]  

  • 40. Closed-loop control of the thalamocortical relay neuron's Parkinsonian state based on slow variable.
    Liu C; Wang J; Chen YY; Deng B; Wei XL; Li HY
    Int J Neural Syst; 2013 Aug; 23(4):1350017. PubMed ID: 23746290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.