These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32738516)
1. Delineating functional properties of a cello-oligosaccharide and β-glucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for β-(1,3)-(1,4)-glucan degradation. Mafa MS; Malgas S; Rashamuse K; Pletschke BI Carbohydr Res; 2020 Sep; 495():108081. PubMed ID: 32738516 [TBL] [Abstract][Full Text] [Related]
2. Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-->3), (1-->4)-beta-D-glucans and xyloglucan. Amano Y; Shiroishi M; Nisizawa K; Hoshino E; Kanda T J Biochem; 1996 Dec; 120(6):1123-9. PubMed ID: 9010760 [TBL] [Abstract][Full Text] [Related]
3. N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. Gao L; Gao F; Wang L; Geng C; Chi L; Zhao J; Qu Y J Biol Chem; 2012 May; 287(19):15906-15. PubMed ID: 22427663 [TBL] [Abstract][Full Text] [Related]
5. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase. Igarashi K; Wada M; Samejima M FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934 [TBL] [Abstract][Full Text] [Related]
6. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Palonen H; Tenkanen M; Linder M Appl Environ Microbiol; 1999 Dec; 65(12):5229-33. PubMed ID: 10583969 [TBL] [Abstract][Full Text] [Related]
7. Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Zhang J; Viikari L Bioresour Technol; 2012 Aug; 117():286-91. PubMed ID: 22613900 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Yue Z; Bin W; Baixu Y; Peiji G Sci China C Life Sci; 2004 Feb; 47(1):18-24. PubMed ID: 15382672 [TBL] [Abstract][Full Text] [Related]
9. Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogeneous expression in yeast Saccharomyces cerevisiae. Song J; Liu B; Liu Z; Yang Q Mol Biol Rep; 2010 Apr; 37(4):2135-40. PubMed ID: 19669931 [TBL] [Abstract][Full Text] [Related]
10. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. Rytioja J; Hildén K; Mäkinen S; Vehmaanperä J; Hatakka A; Mäkelä MR PLoS One; 2015; 10(12):e0145166. PubMed ID: 26660105 [TBL] [Abstract][Full Text] [Related]
11. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Andberg M; Penttilä M; Saloheimo M Bioresour Technol; 2015 Apr; 181():105-13. PubMed ID: 25643956 [TBL] [Abstract][Full Text] [Related]
12. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ; Kari J; Badino SF; Borch K; Westh P FEBS J; 2018 Dec; 285(23):4482-4493. PubMed ID: 30281909 [TBL] [Abstract][Full Text] [Related]
13. A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis. Zhou H; Li T; Yu Z; Ju J; Zhang H; Tan H; Li K; Yin H Int J Biol Macromol; 2019 Oct; 139():570-576. PubMed ID: 31381927 [TBL] [Abstract][Full Text] [Related]
14. Adsorption characteristics of fungal family 1 cellulose-binding domain from Trichoderma reesei cellobiohydrolase I on crystalline cellulose: negative cooperative adsorption via a steric exclusion effect. Sugimoto N; Igarashi K; Wada M; Samejima M Langmuir; 2012 Oct; 28(40):14323-9. PubMed ID: 22950684 [TBL] [Abstract][Full Text] [Related]
15. Structural changes of cellobiohydrolase I (1,4-beta-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-beta-D-cellobioside) during the binding process. Wu B; Wang L; Gao P Sci China C Life Sci; 2008 May; 51(5):459-69. PubMed ID: 18785592 [TBL] [Abstract][Full Text] [Related]
16. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Kipper K; Väljamäe P; Johansson G Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of cellulase reaction on pure cellulosic substrates. Gupta R; Lee YY Biotechnol Bioeng; 2009 Apr; 102(6):1570-81. PubMed ID: 19061239 [TBL] [Abstract][Full Text] [Related]
18. Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast. Bailey MJ; Siika-aho M; Valkeajärvi A; Penttilä ME Biotechnol Appl Biochem; 1993 Feb; 17(1):65-76. PubMed ID: 8439405 [TBL] [Abstract][Full Text] [Related]
19. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. Badino SF; Kari J; Christensen SJ; Borch K; Westh P Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1739-1745. PubMed ID: 28844741 [TBL] [Abstract][Full Text] [Related]