These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 32738559)
1. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Lu Y; Zhang Q; Wang X; Zhou X; Zhu J Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559 [TBL] [Abstract][Full Text] [Related]
2. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic insights into improving mechanisms of Fe Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599 [TBL] [Abstract][Full Text] [Related]
4. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste. Zhou X; Lu Y; Huang L; Zhang Q; Wang X; Zhu J Bioresour Technol; 2021 Sep; 336():125338. PubMed ID: 34082333 [TBL] [Abstract][Full Text] [Related]
5. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546 [TBL] [Abstract][Full Text] [Related]
6. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
7. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672 [TBL] [Abstract][Full Text] [Related]
8. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. Zhang Q; Lu Y; Zhou X; Wang X; Zhu J Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Wang K; Yin J; Shen D; Li N Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700 [TBL] [Abstract][Full Text] [Related]
10. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
11. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Greses S; Tomás-Pejó E; Gónzalez-Fernández C Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382 [TBL] [Abstract][Full Text] [Related]
12. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Eryildiz B; Lukitawesa ; Taherzadeh MJ Bioresour Technol; 2020 Apr; 302():122800. PubMed ID: 31986336 [TBL] [Abstract][Full Text] [Related]
13. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Yu P; Tu W; Wu M; Zhang Z; Wang H Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
15. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources. Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212 [TBL] [Abstract][Full Text] [Related]
16. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration. Wang Q; Zhang G; Chen L; Yang N; Wu Y; Fang W; Zhang R; Wang X; Fu C; Zhang P Waste Manag; 2023 Jun; 164():29-36. PubMed ID: 37023642 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic digestion of pre-fermented potato peel wastes for methane production. Liang S; McDonald AG Waste Manag; 2015 Dec; 46():197-200. PubMed ID: 26421481 [TBL] [Abstract][Full Text] [Related]
18. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion. Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505 [TBL] [Abstract][Full Text] [Related]
19. Regulation of volatile fatty acid accumulation from waste: Effect of inoculum pretreatment. Jayakrishnan U; Deka D; Das G Water Environ Res; 2021 Jul; 93(7):1019-1031. PubMed ID: 33259657 [TBL] [Abstract][Full Text] [Related]
20. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]