These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32738580)

  • 1. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions.
    Havaux M
    Plant Physiol Biochem; 2020 Oct; 155():35-41. PubMed ID: 32738580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid oxidation products as stress signals in plants.
    Havaux M
    Plant J; 2014 Aug; 79(4):597-606. PubMed ID: 24267746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Cyclocitral: Emerging Bioactive Compound in Plants.
    Faizan M; Tonny SH; Afzal S; Farooqui Z; Alam P; Ahmed SM; Yu F; Hayat S
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis.
    Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11998-2006. PubMed ID: 26961531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation and formation of wood odorant β-cyclocitral during permanganate oxidation.
    Zhang KJ; Gao NY; Yen HK; Chiu YT; Lin TF
    J Hazard Mater; 2011 Oct; 194():362-8. PubMed ID: 21871724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.
    Baba SA; Jain D; Abbas N; Ashraf N
    J Plant Physiol; 2015 Sep; 189():114-25. PubMed ID: 26595090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical Technique Optimization on the Detection of β-cyclocitral in
    Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue color formation of cyanobacteria with beta-cyclocitral.
    Harada K; Ozaki K; Tsuzuki S; Kato H; Hasegawa M; Kuroda EK; Arii S; Tsuji K
    J Chem Ecol; 2009 Nov; 35(11):1295-301. PubMed ID: 19936836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Apocarotenoid β-Cyclocitric Acid Elicits Drought Tolerance in Plants.
    D'Alessandro S; Mizokami Y; Légeret B; Havaux M
    iScience; 2019 Sep; 19():461-473. PubMed ID: 31437750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apocarotenoids Involved in Plant Development and Stress Response.
    Felemban A; Braguy J; Zurbriggen MD; Al-Babili S
    Front Plant Sci; 2019; 10():1168. PubMed ID: 31611895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis.
    Jüttner F; Watson SB; von Elert E; Köster O
    J Chem Ecol; 2010 Dec; 36(12):1387-97. PubMed ID: 21072572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral.
    Shumbe L; D'Alessandro S; Shao N; Chevalier A; Ksas B; Bock R; Havaux M
    Plant Cell Environ; 2017 Feb; 40(2):216-226. PubMed ID: 27813110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants.
    Ramel F; Birtic S; Ginies C; Soubigou-Taconnat L; Triantaphylidès C; Havaux M
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5535-40. PubMed ID: 22431637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Cyclocitral is a conserved root growth regulator.
    Dickinson AJ; Lehner K; Mi J; Jia KP; Mijar M; Dinneny J; Al-Babili S; Benfey PN
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10563-10567. PubMed ID: 31068462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant apocarotenoids: from retrograde signaling to interspecific communication.
    Moreno JC; Mi J; Alagoz Y; Al-Babili S
    Plant J; 2021 Jan; 105(2):351-375. PubMed ID: 33258195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells.
    Zheng X; Zhu K; Ye J; Price EJ; Deng X; Fraser PD
    Phytochemistry; 2020 Dec; 180():112509. PubMed ID: 32966904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of β-Cyclocitral and Its Precursor β-Carotene in
    Wang X; Zhu Y; Hou D; Teng F; Cai Z; Tao Y
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing β-carotene oxidation in photosystem II to master plant stress tolerance.
    D'Alessandro S; Havaux M
    New Phytol; 2019 Sep; 223(4):1776-1783. PubMed ID: 31090944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission.
    Zheng T; Zhou M; Yang L; Wang Y; Wang Y; Meng Y; Liu J; Zuo Z
    Ecotoxicol Environ Saf; 2020 Apr; 192():110313. PubMed ID: 32066007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding β-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress.
    D'Alessandro S; Ksas B; Havaux M
    Plant Cell; 2018 Oct; 30(10):2495-2511. PubMed ID: 30262551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.