BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32738612)

  • 21. Optical constants acquisition and phase change properties of Ge
    Xu Z; Chen C; Wang Z; Wu K; Chong H; Ye H
    RSC Adv; 2018 Jun; 8(37):21040-21046. PubMed ID: 35542376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topological insulator metamaterials with tunable negative refractive index in the optical region.
    Cao T; Wang S
    Nanoscale Res Lett; 2013 Dec; 8(1):526. PubMed ID: 24330596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous realization of electromagnetically induced transparency and electromagnetically induced reflectance in a metasurface.
    Liu W; Li H; Li C; Ding J; Luo Y; Wu W; Guo M; Hong W; Huang L
    Opt Express; 2021 Apr; 29(8):12580-12589. PubMed ID: 33985012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct-tuning methods for semiconductor metamaterials.
    Min L; Wang W; Huang L; Ling Y; Liu T; Liu J; Luo C; Zeng Q
    Sci Rep; 2019 Nov; 9(1):17622. PubMed ID: 31772241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.
    Xu Q; Su X; Ouyang C; Xu N; Cao W; Zhang Y; Li Q; Hu C; Gu J; Tian Z; Azad AK; Han J; Zhang W
    Opt Lett; 2016 Oct; 41(19):4562-4565. PubMed ID: 27749881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling.
    He F; Han B; Li X; Lang T; Jing X; Hong Z
    Opt Express; 2019 Dec; 27(26):37590-37600. PubMed ID: 31878538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromagnetically induced transparency in metamaterials at near-infrared frequency.
    Zhang J; Xiao S; Jeppesen C; Kristensen A; Mortensen NA
    Opt Express; 2010 Aug; 18(16):17187-92. PubMed ID: 20721107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation.
    Cha JJ; Koski KJ; Huang KC; Wang KX; Luo W; Kong D; Yu Z; Fan S; Brongersma ML; Cui Y
    Nano Lett; 2013; 13(12):5913-8. PubMed ID: 24266743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials.
    Cao T; Li Y; Wei CW; Qiu YM
    Opt Express; 2017 May; 25(9):9911-9925. PubMed ID: 28468371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switching and extension of transmission response, based on bending metamaterials.
    Hwang JS; Kim YJ; Yoo YJ; Kim KW; Rhee JY; Chen LY; Lee YP
    Sci Rep; 2017 Jun; 7(1):3559. PubMed ID: 28620189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity.
    Cao T; Wei C; Simpson RE; Zhang L; Cryan MJ
    Sci Rep; 2014 Mar; 4():4463. PubMed ID: 24662968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photonic metamaterials: a new class of materials for manipulating light waves.
    Iwanaga M
    Sci Technol Adv Mater; 2012 Oct; 13(5):053002. PubMed ID: 27877512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge
    Ahmadivand A; Gerislioglu B; Sinha R; Karabiyik M; Pala N
    Sci Rep; 2017 Feb; 7():42807. PubMed ID: 28205643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of low loss 1 × 1 and 1 × 2 phase-change optical switches with different crystalline phases of Ge
    Li Y; Liu FR; Han G; Chen QY; Zhao ZP; Xie XX; Huang Y; Yuan YP
    Nanotechnology; 2020 Nov; 31(45):455206. PubMed ID: 32707570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.
    Carrillo SG; Nash GR; Hayat H; Cryan MJ; Klemm M; Bhaskaran H; Wright CD
    Opt Express; 2016 Jun; 24(12):13563-73. PubMed ID: 27410372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency tunable near-infrared metamaterials based on VO2 phase transition.
    Dicken MJ; Aydin K; Pryce IM; Sweatlock LA; Boyd EM; Walavalkar S; Ma J; Atwater HA
    Opt Express; 2009 Sep; 17(20):18330-9. PubMed ID: 19907624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable absorber embedded with GST mediums and trilayer graphene strip microheaters.
    Pourmand M; Choudhury PK; Mohamed MA
    Sci Rep; 2021 Feb; 11(1):3603. PubMed ID: 33574491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Modulated Terahertz Metasurfaces for Selective and Active Control of Dual-Band Electromagnetic Induced Reflection (EIR) Windows.
    He X; Sun C; Wang Y; Lu G; Jiang J; Yang Y; Gao Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pump-Color Selective Control of Ultrafast All-Optical Switching Dynamics in Metaphotonic Devices.
    Hu Y; You J; Tong M; Zheng X; Xu Z; Cheng X; Jiang T
    Adv Sci (Weinh); 2020 Jul; 7(14):2000799. PubMed ID: 32714770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.