These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32738648)
1. Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks. Cao Y; Wang Y; Yu X; Jiang X; Li G; Zhao J Biosens Bioelectron; 2020 Oct; 166():112452. PubMed ID: 32738648 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-catalyzed electrochemical aptasensor for ultrasensitive detection of soluble PD-L1 in breast cancer based on decorated covalent organic frameworks and carbon nanotubes. Zhang Y; Chen S; Ma J; Zhou X; Sun X; Jing H; Lin M; Zhou C Anal Chim Acta; 2023 Nov; 1282():341927. PubMed ID: 37923412 [TBL] [Abstract][Full Text] [Related]
3. Microporous PdCuB nanotag-based electrochemical aptasensor with Au@CuCl Chang L; Wu H; Chen R; Sun X; Yang Y; Huang C; Ding S; Liu C; Cheng W J Nanobiotechnology; 2023 Mar; 21(1):86. PubMed ID: 36906540 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Electrochemical Characterization of the Immune Checkpoint Protein PD-L1 using Aptamer-Functionalized Magnetic Metal-Organic Frameworks. Ma Y; Wu M; Mo F; Chen Z; Lu J; Sun D Adv Healthc Mater; 2024 Apr; 13(9):e2303103. PubMed ID: 38164814 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive PD-L1-Expressing Exosome Immunosensors Based on a Chemiluminescent Nickel-Cobalt Hydroxide Nanoflower for Diagnosis and Classification of Lung Adenocarcinoma. Wang M; Shu J; Wang Y; Zhang W; Zheng K; Zhou S; Yang D; Cui H ACS Sens; 2024 Jun; 9(6):3444-3454. PubMed ID: 38847105 [TBL] [Abstract][Full Text] [Related]
6. High Throughput and Noninvasive Exosomal PD-L1 Detection for Accurate Immunotherapy Response Prediction via Tim4-Functionalized Magnetic Core-Shell Metal-Organic Frameworks. Wang H; Liu Y; Zhang L; Li X; Zhao G; Song Z; Jia Y; Qiao X Anal Chem; 2023 Dec; 95(49):18268-18277. PubMed ID: 38011622 [TBL] [Abstract][Full Text] [Related]
7. Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes. Wei J; Zhu K; Chen Z; Yang Z; Yang K; Wang Z; Zong S; Cui Y Mikrochim Acta; 2022 Apr; 189(5):182. PubMed ID: 35394232 [TBL] [Abstract][Full Text] [Related]
8. PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr Hu J; Mao Z; Lu Y; Chen Q; Xia J; Deng H; Chen H Biosens Bioelectron; 2023 Sep; 235():115379. PubMed ID: 37207581 [TBL] [Abstract][Full Text] [Related]
9. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Chatterjee S; Chatterjee A; Jana S; Dey S; Roy H; Das MK; Alam J; Adhikary A; Chowdhury A; Biswas A; Manna D; Bhattacharyya A Carcinogenesis; 2021 Feb; 42(1):38-47. PubMed ID: 32832992 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous detection of cancerous exosomal miRNA-21 and PD-L1 with a sensitive dual-cycling nanoprobe. Qin X; Xiang Y; Li N; Wei B; Chen Y; Fang D; Fang M; Li Q; Liu J; Tang Y; Li X; Yang F Biosens Bioelectron; 2022 Nov; 216():114636. PubMed ID: 35986985 [TBL] [Abstract][Full Text] [Related]
11. Accurate and rapid quantification of PD-L1 positive exosomes by a triple-helix molecular probe. Fan Z; Weng Q; Li Y; Zeng T; Wang J; Zhang H; Yu H; Dong Y; Zhao X; Li J Anal Chim Acta; 2023 Apr; 1251():340984. PubMed ID: 36925282 [TBL] [Abstract][Full Text] [Related]
12. Nanoplasmonic Sandwich Immunoassay for Tumor-Derived Exosome Detection and Exosomal PD-L1 Profiling. Wang C; Huang CH; Gao Z; Shen J; He J; MacLachlan A; Ma C; Chang Y; Yang W; Cai Y; Lou Y; Dai S; Chen W; Li F; Chen P ACS Sens; 2021 Sep; 6(9):3308-3319. PubMed ID: 34494426 [TBL] [Abstract][Full Text] [Related]
13. Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes. Li C; Zhou M; Wang H; Wang J; Huang L Talanta; 2022 Aug; 245():123444. PubMed ID: 35430527 [TBL] [Abstract][Full Text] [Related]
14. Portable Aptasensor Based on Parallel Rolling Circle Amplification for Tumor-Derived Exosomes Liquid Biopsy. He Y; Zeng X; Xiong Y; Shen C; Huang K; Chen P Adv Sci (Weinh); 2024 Aug; 11(32):e2403371. PubMed ID: 38923850 [TBL] [Abstract][Full Text] [Related]
15. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Gao ML; He F; Yin BC; Ye BC Analyst; 2019 Mar; 144(6):1995-2002. PubMed ID: 30698587 [TBL] [Abstract][Full Text] [Related]
16. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Wang M; Pan Y; Wu S; Sun Z; Wang L; Yang J; Yin Y; Li G Biosens Bioelectron; 2020 Dec; 169():112638. PubMed ID: 32987328 [TBL] [Abstract][Full Text] [Related]
17. DNA-Engineered iron-based metal-organic framework bio-interface for rapid visual determination of exosomes. Ding Z; Lu Y; Wei Y; Song D; Xu Z; Fang J J Colloid Interface Sci; 2022 Apr; 612():424-433. PubMed ID: 34999547 [TBL] [Abstract][Full Text] [Related]
18. Isolation of circulating exosomes and identification of exosomal PD-L1 for predicting immunotherapy response. Zhang J; Zhu Y; Guan M; Liu Y; Lv M; Zhang C; Zhang H; Zhang Z Nanoscale; 2022 Jun; 14(25):8995-9003. PubMed ID: 35700522 [TBL] [Abstract][Full Text] [Related]
19. Coaxial dual-path electrochemical biosensing and logic strategy-based detection of lung cancer-derived exosomal PD-L1. Liu J; Liu Z; Zhao C; Jiao Y; Li B; Shi J; Chen Z; Zhang Z Nanoscale; 2024 May; 16(18):8950-8959. PubMed ID: 38630023 [TBL] [Abstract][Full Text] [Related]
20. Histostar-Functionalized Covalent Organic Framework for Electrochemical Detection of Exosomes. Lin Y; Nie B; Qu X; Wang M; Yang J; Li G Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]