These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32738685)

  • 1. Reduction of bioaccessibility of As in soil through in situ formation of amorphous Fe oxides and its long-term stability.
    Park J; An J; Chung H; Kim SH; Nam K
    Sci Total Environ; 2020 Nov; 745():140989. PubMed ID: 32738685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of neutralizing agents on the type of As co-precipitates formed by in situ Fe oxides synthesis and its impact on the bioaccessibility of As in soil.
    Park J; Chung H; Kim SH; An J; Nam K
    Sci Total Environ; 2020 Nov; 743():140686. PubMed ID: 32673914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralogical Controls on the Bioaccessibility of Arsenic in Fe(III)-As(V) Coprecipitates.
    Ehlert K; Mikutta C; Jin Y; Kretzschmar R
    Environ Sci Technol; 2018 Jan; 52(2):616-627. PubMed ID: 29300080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
    Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD
    Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies.
    Bagherifam S; Lakzian A; Fotovat A; Khorasani R; Komarneni S
    J Hazard Mater; 2014 May; 273():247-52. PubMed ID: 24751490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: Chemical extractability and biological response.
    An J; Jeong B; Nam K
    J Hazard Mater; 2019 Apr; 367():137-143. PubMed ID: 30594712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption, sequestration, and bioaccessibility of As(V) in soils.
    Yang JK; Barnett MO; Jardine PM; Basta NT; Casteel SW
    Environ Sci Technol; 2002 Nov; 36(21):4562-9. PubMed ID: 12433165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: Test with synthesized two line ferrihydrite.
    Jeong S; Yang K; Jho EH; Nam K
    J Hazard Mater; 2017 May; 330():157-164. PubMed ID: 28242536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: aging effects on metal solubility and extractability by citrate.
    Martínez CE; McBride MB
    Environ Toxicol Chem; 2001 Jan; 20(1):122-6. PubMed ID: 11351398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption, oxidation, and bioaccessibility of As(III) in soils.
    Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM
    Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments.
    Subacz JL; Barnett MO; Jardine PM; Stewart MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1317-29. PubMed ID: 17654151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant.
    Cancès B; Juillot F; Morin G; Laperche V; Alvarez L; Proux O; Hazemann JL; Brown GE; Calas G
    Environ Sci Technol; 2005 Dec; 39(24):9398-405. PubMed ID: 16475314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil.
    Wan D; Zhang N; Chen W; Cai P; Zheng L; Huang Q
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32130-32139. PubMed ID: 30218340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of sulfur on the species of Fe and As under redox condition in paddy soil].
    Tang BP; Yang SJ; Wang DZ; Rao W; Zhang YN; Wang D; Zhu YJ
    Huan Jing Ke Xue; 2014 Oct; 35(10):3851-61. PubMed ID: 25693393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils.
    Mikutta C; Mandaliev PN; Mahler N; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014 Nov; 48(22):13468-77. PubMed ID: 25358072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils.
    Smith E; Kempson IM; Juhasz AL; Weber J; Rofe A; Gancarz D; Naidu R; McLaren RG; Gräfe M
    Environ Sci Technol; 2011 Jul; 45(14):6145-52. PubMed ID: 21707121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils].
    Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL
    Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.