These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32738689)

  • 1. Impact of acetic acid addition on nitrogen speciation and bacterial communities during urine collection and storage.
    Saetta D; Zheng C; Leyva C; Boyer TH
    Sci Total Environ; 2020 Nov; 745():141010. PubMed ID: 32738689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking and Inhibiting Urea Hydrolysis in Nonwater Urinals.
    Saetta D; Boyer TH
    Environ Sci Technol; 2017 Dec; 51(23):13850-13858. PubMed ID: 29095605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Monitoring and Control of Urea Hydrolysis in Cyber-Enabled Nonwater Urinal System.
    Saetta D; Padda A; Li X; Leyva C; Mirchandani PB; Boscovic D; Boyer TH
    Environ Sci Technol; 2019 Mar; 53(6):3187-3197. PubMed ID: 30793897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping.
    Tao W; Bayrakdar A; Wang Y; Agyeman F
    J Environ Manage; 2019 Nov; 249():109435. PubMed ID: 31450199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities for Building-Scale Urine Diversion and Challenges for Implementation.
    Boyer TH; Saetta D
    Acc Chem Res; 2019 Apr; 52(4):886-895. PubMed ID: 30908003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urea hydrolysis and long-term storage of source-separated urine for reuse as fertiliser is insufficient for the removal of anthropogenic micropollutants.
    Monetti J; Nieradzik L; Freguia S; Choi PM; O'Brien JW; Thomas KV; Ledezma P
    Water Res; 2022 Aug; 222():118891. PubMed ID: 35907300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen recovery by urea hydrolysis and struvite precipitation from anthropogenic urine.
    Kabdaşli I; Tünay O; Işlek C; Erdinç E; Hüskalar S; Tatli MB
    Water Sci Technol; 2006; 53(12):305-12. PubMed ID: 16889267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions.
    Andreev N; Ronteltap M; Boincean B; Wernli M; Zubcov E; Bagrin N; Borodin N; Lens PNL
    J Environ Manage; 2017 Aug; 198(Pt 1):63-69. PubMed ID: 28448847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition factor of ammonification in stored urine with fecal contamination.
    Hotta S; Funamizu N
    Water Sci Technol; 2008; 58(6):1187-92. PubMed ID: 18845855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of nitrogen during volume reduction of human urine using an on-site volume reduction system.
    Pahore MM; Ushijima K; Ito R; Funamizu N
    Environ Technol; 2012; 33(1-3):229-35. PubMed ID: 22519107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of hydrolysis rate of urea on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro.
    Wang P; Zhao S; Nan X; Jin D; Wang J
    PeerJ; 2018; 6():e5475. PubMed ID: 30128212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ureolytic Activity and Its Regulation in Vibrio campbellii and Vibrio harveyi in Relation to Nitrogen Recovery from Human Urine.
    Defoirdt T; Vlaeminck SE; Sun X; Boon N; Clauwaert P
    Environ Sci Technol; 2017 Nov; 51(22):13335-13343. PubMed ID: 29083891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives.
    Remer T; Montenegro-Bethancourt G; Shi L
    Clin Biochem; 2014 Dec; 47(18):307-11. PubMed ID: 25239781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the precipitation potential in urine-collecting systems.
    Udert KM; Larsen TA; Gujer W
    Water Res; 2003 Jun; 37(11):2667-77. PubMed ID: 12753844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea stabilisation and concentration for urine-diverting dry toilets: Urine dehydration in ash.
    Senecal J; Vinnerås B
    Sci Total Environ; 2017 May; 586():650-657. PubMed ID: 28215808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine.
    Liu Z; Zhao Q; Wang K; Lee D; Qiu W; Wang J
    J Environ Sci (China); 2008; 20(8):1018-24. PubMed ID: 18817084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of source-separated human urine by chemical oxidation.
    Zhang Y; Li Z; Zhao Y; Chen S; Mahmood IB
    Water Sci Technol; 2013; 67(9):1901-7. PubMed ID: 23656931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of source-separated urine by heat-activated peroxydisulfate.
    Lv Y; Li Z; Zhou X; Cheng S; Zheng L
    Sci Total Environ; 2020 Dec; 749():142213. PubMed ID: 33370919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation.
    Simha P; Senecal J; Nordin A; Lalander C; Vinnerås B
    Water Res; 2018 Oct; 142():325-336. PubMed ID: 29890480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems.
    Ilgrande C; Defoirdt T; Vlaeminck SE; Boon N; Clauwaert P
    Astrobiology; 2019 Nov; 19(11):1353-1362. PubMed ID: 31657947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.