BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32738783)

  • 1. Transcriptomic analysis of Raphidocelis subcapitata exposed to erythromycin: The role of DNA replication in hormesis and growth inhibition.
    Guo J; Ma Z; Peng J; Mo J; Li Q; Guo J; Yang F
    J Hazard Mater; 2021 Jan; 402():123512. PubMed ID: 32738783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic profiles in a green alga (Raphidocelis subcapitata) following erythromycin treatment: ABC transporters and energy metabolism.
    Mo J; Ma Z; Yan S; Cheung NK; Yang F; Yao X; Guo J
    J Environ Sci (China); 2023 Feb; 124():591-601. PubMed ID: 36182165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfamethoxazole-Altered Transcriptomein Green Alga
    Guo J; Zhang Y; Mo J; Sun H; Li Q
    Front Microbiol; 2021; 12():541451. PubMed ID: 34349730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin.
    Guo J; Bai Y; Chen Z; Mo J; Li Q; Sun H; Zhang Q
    Ecotoxicol Environ Saf; 2020 Sep; 201():110737. PubMed ID: 32505758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tylosin toxicity in the alga Raphidocelis subcapitata revealed by integrated analyses of transcriptome and metabolome: Photosynthesis and DNA replication-coupled repair.
    Li Q; Lu D; Sun H; Guo J; Mo J
    Aquat Toxicol; 2021 Oct; 239():105964. PubMed ID: 34534865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair.
    Mo J; Qi Q; Hao Y; Lei Y; Guo J
    J Environ Sci (China); 2022 Jan; 111():400-411. PubMed ID: 34949369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii.
    Mo J; Lv R; Qin X; Wu X; Chen H; Yan N; Shi J; Wu Y; Liu W; Kong RYC; Guo J
    Ecotoxicol Environ Saf; 2023 Sep; 263():115242. PubMed ID: 37441949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative analyses of transcriptomics and metabolomics in Raphidocelis subcapitata treated with clarithromycin.
    Peng J; Guo J; Lei Y; Mo J; Sun H; Song J
    Chemosphere; 2021 Mar; 266():128933. PubMed ID: 33223212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata.
    Machado MD; Soares EV
    Aquat Toxicol; 2019 Mar; 208():179-186. PubMed ID: 30682620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response?
    Machado MD; Soares EV
    Aquat Toxicol; 2023 Nov; 264():106732. PubMed ID: 37879199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Effects of Sulfamethoxazole and Erythromycin on a Freshwater Microalga,
    Zhang Y; He D; Chang F; Dang C; Fu J
    Antibiotics (Basel); 2021 May; 10(5):. PubMed ID: 34068228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic toxic effects of erythromycin and its photodegradation products on microalgae Chlorella pyrenoidosa.
    Li J; Li W; Liu N; Du C
    Aquat Toxicol; 2024 Jun; 271():106922. PubMed ID: 38615581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata.
    Reynolds A; Giltrap DM; Chambers PG
    Ecotoxicol Environ Saf; 2021 Jan; 207():111153. PubMed ID: 32896819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris.
    Guo J; Peng J; Lei Y; Kanerva M; Li Q; Song J; Guo J; Sun H
    Aquat Toxicol; 2020 Feb; 219():105376. PubMed ID: 31838304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure.
    Yi AX; Leung PT; Leung KM
    Aquat Toxicol; 2014 Sep; 154():48-57. PubMed ID: 24858899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of water temperature and light intensity on the acute toxicity of herbicide thiobencarb to a green alga, Raphidocelis subcapitata.
    Tasmin R; Shimasaki Y; Tsuyama M; Qiu X; Khalil F; Mukai K; Khanam MRM; Yamada N; Fukuda S; Kang IJ; Oshima Y
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25363-25370. PubMed ID: 29946846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems.
    Ashraf A; Liu G; Yousaf B; Arif M; Ahmed R; Irshad S; Cheema AI; Rashid A; Gulzaman H
    Sci Total Environ; 2021 Jun; 772():145389. PubMed ID: 33578171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system.
    Wang X; Dou X; Wu J; Meng F
    Environ Res; 2021 Apr; 195():110873. PubMed ID: 33582131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomic Response of
    Wu X; Tong Y; Li T; Guo J; Liu W; Mo J
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O.
    Fan C; He J
    Water Res; 2011 May; 45(10):3098-106. PubMed ID: 21482429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.