BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32738790)

  • 1. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones.
    Sweeny EA; Schlanger S; Stuehr DJ
    Redox Biol; 2020 Sep; 36():101656. PubMed ID: 32738790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones.
    Chen F; Haigh S; Yu Y; Benson T; Wang Y; Li X; Dou H; Bagi Z; Verin AD; Stepp DW; Csanyi G; Chadli A; Weintraub NL; Smith SM; Fulton DJ
    Free Radic Biol Med; 2015 Dec; 89():793-805. PubMed ID: 26456056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide and heme-NO stimulate superoxide production by NADPH oxidase 5.
    Sweeny EA; Hunt AP; Batka AE; Schlanger S; Lehnert N; Stuehr DJ
    Free Radic Biol Med; 2021 Aug; 172():252-263. PubMed ID: 34139309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Nox5 polymorphisms on basal and stimulus-dependent ROS generation.
    Wang Y; Chen F; Le B; Stepp DW; Fulton DJ
    PLoS One; 2014; 9(7):e100102. PubMed ID: 24992705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes.
    Bánfi B; Molnár G; Maturana A; Steger K; Hegedûs B; Demaurex N; Krause KH
    J Biol Chem; 2001 Oct; 276(40):37594-601. PubMed ID: 11483596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells.
    Brar SS; Corbin Z; Kennedy TP; Hemendinger R; Thornton L; Bommarius B; Arnold RS; Whorton AR; Sturrock AB; Huecksteadt TP; Quinn MT; Krenitsky K; Ardie KG; Lambeth JD; Hoidal JR
    Am J Physiol Cell Physiol; 2003 Aug; 285(2):C353-69. PubMed ID: 12686516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic regulation and functional relevance of NOX5.
    Chen F; Wang Y; Barman S; Fulton DJ
    Curr Pharm Des; 2015; 21(41):5999-6008. PubMed ID: 26510438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation.
    Jagnandan D; Church JE; Banfi B; Stuehr DJ; Marrero MB; Fulton DJ
    J Biol Chem; 2007 Mar; 282(9):6494-507. PubMed ID: 17164239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells.
    Yu P; Han W; Villar VA; Yang Y; Lu Q; Lee H; Li F; Quinn MT; Gildea JJ; Felder RA; Jose PA
    Redox Biol; 2014; 2():570-9. PubMed ID: 24688893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity.
    Prior KK; Leisegang MS; Josipovic I; Löwe O; Shah AM; Weissmann N; Schröder K; Brandes RP
    Redox Biol; 2016 Oct; 9():287-295. PubMed ID: 27614387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation.
    Qian J; Chen F; Kovalenkov Y; Pandey D; Moseley MA; Foster MW; Black SM; Venema RC; Stepp DW; Fulton DJ
    Free Radic Biol Med; 2012 May; 52(9):1806-19. PubMed ID: 22387196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the NADPH oxidase in human sperm and white blood cells.
    Armstrong JS; Bivalacqua TJ; Chamulitrat W; Sikka S; Hellstrom WJ
    Int J Androl; 2002 Aug; 25(4):223-9. PubMed ID: 12121572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia.
    Kamiguti AS; Serrander L; Lin K; Harris RJ; Cawley JC; Allsup DJ; Slupsky JR; Krause KH; Zuzel M
    J Immunol; 2005 Dec; 175(12):8424-30. PubMed ID: 16339585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5).
    Bánfi B; Tirone F; Durussel I; Knisz J; Moskwa P; Molnár GZ; Krause KH; Cox JA
    J Biol Chem; 2004 Apr; 279(18):18583-91. PubMed ID: 14982937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.
    Guzik TJ; Chen W; Gongora MC; Guzik B; Lob HE; Mangalat D; Hoch N; Dikalov S; Rudzinski P; Kapelak B; Sadowski J; Harrison DG
    J Am Coll Cardiol; 2008 Nov; 52(22):1803-9. PubMed ID: 19022160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5).
    García JG; Ansorena E; Izal I; Zalba G; de Miguel C; Milagro FI
    J Physiol Biochem; 2023 May; 79(2):383-395. PubMed ID: 36905456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of NADPH oxidase 5 by protein kinase C isoforms.
    Chen F; Yu Y; Haigh S; Johnson J; Lucas R; Stepp DW; Fulton DJ
    PLoS One; 2014; 9(2):e88405. PubMed ID: 24505490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca
    Miyano K; Kajikawa M
    FEBS Lett; 2023 Mar; 597(5):702-713. PubMed ID: 36653838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett's esophageal adenocarcinoma cells.
    Si J; Fu X; Behar J; Wands J; Beer DG; Souza RF; Spechler SJ; Lambeth D; Cao W
    J Biol Chem; 2007 Jun; 282(22):16244-55. PubMed ID: 17403674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.