BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32739274)

  • 1. The Impact of Formulation Composition and Process Settings of Traditional Batch Versus Continuous Freeze-Drying On Protein Aggregation.
    Vanbillemont B; Carpenter JF; Probst C; De Beer T
    J Pharm Sci; 2020 Nov; 109(11):3308-3318. PubMed ID: 32739274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.
    Garidel P; Pevestorf B; Bahrenburg S
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.
    Abla KK; Mehanna MM
    Int J Pharm; 2022 Nov; 628():122233. PubMed ID: 36183914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Sep; 96(9):2242-50. PubMed ID: 17621675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.
    Grant Y; Matejtschuk P; Dalby PA
    Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallizing amino acids as bulking agents in freeze-drying.
    Horn J; Tolardo E; Fissore D; Friess W
    Eur J Pharm Biopharm; 2018 Nov; 132():70-82. PubMed ID: 30201570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state.
    Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ
    J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vial printing and drying of biologics as a personalizable approach.
    Fiedler D; Alva C; Pinto JT; Spoerk M; Jeitler R; Roblegg E
    Int J Pharm; 2022 Jul; 623():121909. PubMed ID: 35697202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    J Pharm Sci; 2010 May; 99(5):2256-78. PubMed ID: 20039389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.