These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 32739402)
1. Identification and characterization of virulence-attenuated mutants in Ralstonia solanacearum as potential biocontrol agents against bacterial wilt of Pogostemon cablin. Zhang Y; Li G; Li Q; He L; Zhang Y; Wang Y; He H Microb Pathog; 2020 Oct; 147():104418. PubMed ID: 32739402 [TBL] [Abstract][Full Text] [Related]
2. A practical random mutagenesis system for Ralstonia solanacearum strains causing bacterial wilt of Pogostemon cablin using Tn5 transposon. Wang Y; Zhang Y; Jin H; Deng Z; Li Z; Mai Y; Li G; He H World J Microbiol Biotechnol; 2018 Dec; 35(1):7. PubMed ID: 30565199 [TBL] [Abstract][Full Text] [Related]
3. Selection of the Dominant Endophytes Based on Illumina Sequencing Analysis for Controlling Bacterial Wilt of Patchouli Caused by Shi W; Li J; Xie S; Wang X; Zhang Y; Yao H; Chen M; Li J; Deng Z Plant Dis; 2024 Apr; 108(4):996-1004. PubMed ID: 38613135 [TBL] [Abstract][Full Text] [Related]
4. [Construction of Tn5 transposon insertion mutants of Ralstonia solanacearum isolated from Pogostemon cablin]. Wang YQ; Zhang YY; He H; Li Z; Deng ZC; Jin H; Li GW Zhongguo Zhong Yao Za Zhi; 2019 Jan; 44(1):77-81. PubMed ID: 30868815 [TBL] [Abstract][Full Text] [Related]
5. Complete genome sequence of the Pogostemon cablin bacterial wilt pathogen Ralstonia solanacearum strain SY1. Sun Y; Su Y; Hussain A; Xiong L; Li C; Zhang J; Meng Z; Dong Z; Yu G Genes Genomics; 2023 Jan; 45(1):123-134. PubMed ID: 35670995 [TBL] [Abstract][Full Text] [Related]
6. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Raza W; Wang J; Wu Y; Ling N; Wei Z; Huang Q; Shen Q Appl Microbiol Biotechnol; 2016 Sep; 100(17):7639-50. PubMed ID: 27183998 [TBL] [Abstract][Full Text] [Related]
7. Trehalose Synthesis Contributes to Osmotic Stress Tolerance and Virulence of the Bacterial Wilt Pathogen MacIntyre AM; Barth JX; Pellitteri Hahn MC; Scarlett CO; Genin S; Allen C Mol Plant Microbe Interact; 2020 Mar; 33(3):462-473. PubMed ID: 31765286 [TBL] [Abstract][Full Text] [Related]
8. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Minh Tran T; MacIntyre A; Khokhani D; Hawes M; Allen C Environ Microbiol; 2016 Nov; 18(11):4103-4117. PubMed ID: 27387368 [TBL] [Abstract][Full Text] [Related]
9. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. Jacobs JM; Babujee L; Meng F; Milling A; Allen C mBio; 2012; 3(4):. PubMed ID: 22807564 [TBL] [Abstract][Full Text] [Related]
10. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Yao J; Allen C J Bacteriol; 2006 May; 188(10):3697-708. PubMed ID: 16672623 [TBL] [Abstract][Full Text] [Related]
11. Using the Ralstonia solanacearum Tat secretome to identify bacterial wilt virulence factors. González ET; Brown DG; Swanson JK; Allen C Appl Environ Microbiol; 2007 Jun; 73(12):3779-86. PubMed ID: 17468289 [TBL] [Abstract][Full Text] [Related]
12. The LysR-Type Transcriptional Regulator CrgA Negatively Regulates the Flagellar Master Regulator Fan X; Zhao Z; Sun T; Rou W; Gui C; Saleem T; Zhao X; Xu X; Zhuo T; Hu X; Zou H J Bacteriol; 2020 Dec; 203(1):. PubMed ID: 33046561 [TBL] [Abstract][Full Text] [Related]
13. Cell Density-Regulated Adhesins Contribute to Early Disease Development and Adhesion in Ralstonia solanacearum. Carter MD; Khokhani D; Allen C Appl Environ Microbiol; 2023 Feb; 89(2):e0156522. PubMed ID: 36688670 [TBL] [Abstract][Full Text] [Related]
14. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Colburn-Clifford JM; Scherf JM; Allen C Appl Environ Microbiol; 2010 Nov; 76(22):7392-9. PubMed ID: 20870795 [TBL] [Abstract][Full Text] [Related]
15. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. Jacobs JM; Milling A; Mitra RM; Hogan CS; Ailloud F; Prior P; Allen C mBio; 2013 Nov; 4(6):e00875-13. PubMed ID: 24281716 [TBL] [Abstract][Full Text] [Related]
16. Twitching and Swimming Motility Play a Role in Ralstonia solanacearum Pathogenicity. Corral J; Sebastià P; Coll NS; Barbé J; Aranda J; Valls M mSphere; 2020 Mar; 5(2):. PubMed ID: 32132161 [No Abstract] [Full Text] [Related]
17. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum. Tran TM; MacIntyre A; Hawes M; Allen C PLoS Pathog; 2016 Jun; 12(6):e1005686. PubMed ID: 27336156 [TBL] [Abstract][Full Text] [Related]
18. A MotN mutant of Ralstonia solanacearum is hypermotile and has reduced virulence. Meng F; Yao J; Allen C J Bacteriol; 2011 May; 193(10):2477-86. PubMed ID: 21421761 [TBL] [Abstract][Full Text] [Related]
19. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. Dalsing BL; Truchon AN; Gonzalez-Orta ET; Milling AS; Allen C mBio; 2015 Mar; 6(2):e02471. PubMed ID: 25784703 [TBL] [Abstract][Full Text] [Related]
20. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. Bhunchoth A; Phironrit N; Leksomboon C; Chatchawankanphanich O; Kotera S; Narulita E; Kawasaki T; Fujie M; Yamada T J Appl Microbiol; 2015 Apr; 118(4):1023-33. PubMed ID: 25619754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]