BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32739678)

  • 1. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance.
    Kono H; Numata J
    Carbohydr Res; 2020 Sep; 495():108067. PubMed ID: 32739678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of mole fractions of ethyl-cellulose-containing monomers by NMR.
    Kono H
    Carbohydr Res; 2017 Jun; 445():51-60. PubMed ID: 28402900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances.
    Kono H; Oka C; Kishimoto R; Fujita S
    Carbohydr Polym; 2017 Aug; 170():23-32. PubMed ID: 28521991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.
    Kono H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 118():91-100. PubMed ID: 25542112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR characterization of sodium carboxymethyl cellulose: Substituent distribution and mole fraction of monomers in the polymer chains.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Aug; 146():1-9. PubMed ID: 27112844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains.
    Kono H; Fujita S; Tajima K
    Carbohydr Polym; 2017 Feb; 157():728-738. PubMed ID: 27987985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Oct; 150():241-9. PubMed ID: 27312635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution.
    Kono H
    Data Brief; 2018 Jun; 18():1088-1098. PubMed ID: 29900279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy.
    Kono H
    Carbohydr Res; 2013 Jun; 375():136-44. PubMed ID: 23707362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ¹H and ¹³C chemical shift assignment of the monomers that comprise carboxymethyl cellulose.
    Kono H
    Carbohydr Polym; 2013 Sep; 97(2):384-90. PubMed ID: 23911461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntheses and comparison of 2,6-di-O-methyl celluloses from natural and synthetic celluloses.
    Kamitakahara H; Koschella A; Mikawa Y; Nakatsubo F; Heinze T; Klemm D
    Macromol Biosci; 2008 Jul; 8(7):690-700. PubMed ID: 18383569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR, cloud-point measurements and enzymatic depolymerization: complementary tools to investigate substituent patterns in modified celluloses.
    Fitzpatrick F; Schagerlöf H; Andersson T; Richardson S; Tjerneld F; Wahlund KG; Wittgren B
    Biomacromolecules; 2006 Oct; 7(10):2909-17. PubMed ID: 17025369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the synthesis of 2,3-o-hydroxyalkyl ethers of cellulose.
    Schaller J; Heinze T
    Macromol Biosci; 2005 Jan; 5(1):58-63. PubMed ID: 15635716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of photochromic azobenzene cellulose ethers.
    Li Z; Zhang D; Weng J; Chen B; Liu H
    Carbohydr Polym; 2014 Jan; 99():748-54. PubMed ID: 24274566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the DS and substituent distribution of cationic alkyl polyglycosides and cationic starch ethers by GLC after dealkylation with morpholine.
    Goclik V; Mischnick P
    Carbohydr Res; 2003 Apr; 338(8):733-41. PubMed ID: 12668093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of the substituent distribution in 3-O-ethyl/propyl cellulose derivatives.
    Cuers J; Wang Y; Koschella A; Heinze T; Mischnick P
    Carbohydr Polym; 2013 Jul; 96(1):246-52. PubMed ID: 23688477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-association of novel mixed 3-mono-O-alkyl cellulose: Effect of the hydrophobic moieties ratio.
    Sullo A; Wang Y; Koschella A; Heinze T; Foster TJ
    Carbohydr Polym; 2013 Apr; 93(2):574-81. PubMed ID: 23499098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of a trifunctional aminoamide cellulose derivative.
    Zhang C; Price LM; Daly WH
    Biomacromolecules; 2006 Jan; 7(1):139-45. PubMed ID: 16398508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of anhydrocelluloses--is a cellulose structure with residues in a 1C4-conformation more prone to hydrolysis?
    Jadhav V; Pedersen CM; Bols M
    Org Biomol Chem; 2011 Nov; 9(21):7525-34. PubMed ID: 21931923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.