BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32739678)

  • 21. Comprehensive analysis of the substituent distribution in hydroxyethyl celluloses by quantitative MALDI-ToF-MS.
    Adden R; Müller R; Brinkmalm G; Ehrler R; Mischnick P
    Macromol Biosci; 2006 Jun; 6(6):435-44. PubMed ID: 16761275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and structure/property relationships of regioselective 2-O-, 3-O- and 6-O-ethyl celluloses.
    Kamitakahara H; Funakoshi T; Nakai S; Takano T; Nakatsubo F
    Macromol Biosci; 2010 Jun; 10(6):638-47. PubMed ID: 20217857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2-O-Methyl- and 3,6-di-O-methyl-cellulose from natural cellulose: synthesis and structure characterization.
    Nakagawa A; Ishizu C; Sarbova V; Koschella A; Takano T; Heinze T; Kamitakahara H
    Biomacromolecules; 2012 Sep; 13(9):2760-8. PubMed ID: 22817399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trimethylsilylation of cellulose in ionic liquids.
    Mormann W; Wezstein M
    Macromol Biosci; 2009 Apr; 9(4):369-75. PubMed ID: 19031387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Line shapes in CP/MAS (13)C NMR spectra of cellulose I.
    Larsson PT; Westlund PO
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):539-46. PubMed ID: 15953762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear Overhauser effect spectroscopy (NOESY) detection of the specific interaction between substituents in cellulose and amylose triacetates.
    Tezuka Y
    Biopolymers; 1994 Nov; 34(11):1477-81. PubMed ID: 7827261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose.
    Richardson S; Andersson T; Brinkmalm G; Wittgren B
    Anal Chem; 2003 Nov; 75(22):6077-83. PubMed ID: 14615984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DFT study of (17)O, (1)H and (13)C NMR chemical shifts in two forms of native cellulose, I(α) and I(β).
    Esrafili MD; Ahmadin H
    Carbohydr Res; 2012 Jan; 347(1):99-106. PubMed ID: 22129840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters.
    Hornig S; Heinze T
    Biomacromolecules; 2008 May; 9(5):1487-92. PubMed ID: 18393524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 13C-n.m.r. structural study on an enteric pharmaceutical coating cellulose derivative having ether and ester substituents.
    Tezuka Y; Imai K; Oshima M; Ito K
    Carbohydr Res; 1991 Dec; 222():255-9. PubMed ID: 1813108
    [No Abstract]   [Full Text] [Related]  

  • 31. Exploring the conformational space of amorphous cellulose using NMR chemical shifts.
    Mori T; Chikayama E; Tsuboi Y; Ishida N; Shisa N; Noritake Y; Moriya S; Kikuchi J
    Carbohydr Polym; 2012 Oct; 90(3):1197-203. PubMed ID: 22939331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid determination of γ-value and xanthate group distribution on viscose by liquid-state (1)H NMR spectroscopy.
    Wöss K; Weber H; Grundnig P; Röder T; Weber HK
    Carbohydr Polym; 2016 May; 141():184-9. PubMed ID: 26877011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium.
    Liu CF; Sun RC; Zhang AP; Ren JL; Wang XA; Qin MH; Chao ZN; Luo W
    Carbohydr Res; 2007 May; 342(7):919-26. PubMed ID: 17324384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal and molecular structure of methyl 4-O-methyl-beta-D-ribo-hex-3-ulopyranoside.
    Adorjan I; Rosenau T; Potthast A; Kosma P; Mereiter K; Pauli J; Jäger C
    Carbohydr Res; 2004 Mar; 339(4):795-9. PubMed ID: 14980821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new model for the substitution patterns in the polymer chain of polysaccharide derivatives.
    Mischnick P; Hennig C
    Biomacromolecules; 2001; 2(1):180-4. PubMed ID: 11749170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of gas-liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers.
    Alvarez-Lorenzo C; Lorenzo-Ferreira RA; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    J Pharm Biomed Anal; 1999 Jun; 20(1-2):373-83. PubMed ID: 10704045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using
    Phyo P; Wang T; Yang Y; O'Neill H; Hong M
    Biomacromolecules; 2018 May; 19(5):1485-1497. PubMed ID: 29562125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed 3-mono-O-alkyl cellulose: synthesis, structure characterization and thermal properties.
    Heinze T; Wang Y; Koschella A; Sullo A; Foster TJ
    Carbohydr Polym; 2012 Sep; 90(1):380-6. PubMed ID: 24751055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers.
    Song Y; Sun Y; Zhang X; Zhou J; Zhang L
    Biomacromolecules; 2008 Aug; 9(8):2259-64. PubMed ID: 18637686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution-State One- and Two-Dimensional NMR Spectroscopy of High-Molecular-Weight Cellulose.
    Holding AJ; Mäkelä V; Tolonen L; Sixta H; Kilpeläinen I; King AW
    ChemSusChem; 2016 Apr; 9(8):880-92. PubMed ID: 27010664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.