BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32739678)

  • 41. Location of sulfate groups on sulfoacetate derivatives of cellulose.
    Thomas M; Chauvelon G; Lahaye M; Saulnier L
    Carbohydr Res; 2003 Apr; 338(8):761-70. PubMed ID: 12668096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP/MAS NMR spectroscopy.
    Kumar V; Yang T
    Int J Pharm; 1999 Jul; 184(2):219-26. PubMed ID: 10387951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical structure analysis of starch and cellulose derivatives.
    Mischnick P; Momcilovic D
    Adv Carbohydr Chem Biochem; 2010; 64():117-210. PubMed ID: 20837199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy.
    Baumgartner S; Lahajnar G; Sepe A; Kristl J
    AAPS PharmSciTech; 2002; 3(4):E36. PubMed ID: 12916930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In-Depth Understanding of the Effect of the Distribution of Substituents on the Morphology and Physical Properties of Ethylcellulose: Molecular Dynamics Simulations Insights.
    Kim D; Elf P; Nilsson F; Hedenqvist MS; Larsson A
    Biomacromolecules; 2024 Jul; 25(7):4046-4062. PubMed ID: 38913613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.
    El Nemr A; Ragab S; El Sikaily A
    Carbohydr Polym; 2016 Oct; 151():1058-1067. PubMed ID: 27474655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substitution degree and fatty chain length influence on structure and properties of fatty acid cellulose esters.
    Duchatel-Crépy L; Joly N; Martin P; Marin A; Tahon JF; Lefebvre JM; Gaucher V
    Carbohydr Polym; 2020 Apr; 234():115912. PubMed ID: 32070531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.
    Huang K; Wang B; Cao Y; Li H; Wang J; Lin W; Mu C; Liao D
    J Agric Food Chem; 2011 May; 59(10):5376-81. PubMed ID: 21452895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CP/MAS (13)C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the (13)C resonance for the ring carbons of cellulose triacetate polymorphs.
    Kono H; Erata T; Takai M
    J Am Chem Soc; 2002 Jun; 124(25):7512-8. PubMed ID: 12071761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of cellulose acetate phthalate (CAP).
    Roxin P; Karlsson A; Singh SK
    Drug Dev Ind Pharm; 1998 Nov; 24(11):1025-41. PubMed ID: 9876557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.
    Cao B; Du J; Du D; Sun H; Zhu X; Fu H
    Carbohydr Polym; 2016 Sep; 149():348-56. PubMed ID: 27261759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liquid-State NMR Analysis of Nanocelluloses.
    King AWT; Mäkelä V; Kedzior SA; Laaksonen T; Partl GJ; Heikkinen S; Koskela H; Heikkinen HA; Holding AJ; Cranston ED; Kilpeläinen I
    Biomacromolecules; 2018 Jul; 19(7):2708-2720. PubMed ID: 29614220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose.
    Kondo T; Koschella A; Heublein B; Klemm D; Heinze T
    Carbohydr Res; 2008 Oct; 343(15):2600-4. PubMed ID: 18635159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts.
    Liu CF; Sun RC; Zhang AP; Qin MH; Ren JL; Wang XA
    J Agric Food Chem; 2007 Mar; 55(6):2399-406. PubMed ID: 17319683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions.
    El Nemr A; Ragab S; El Sikaily A; Khaled A
    Carbohydr Polym; 2015 Oct; 130():41-8. PubMed ID: 26076599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups.
    Liu C; Baumann H
    Carbohydr Res; 2002 Aug; 337(14):1297-307. PubMed ID: 12151210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of camphorsulfonyl acetate of cellulose.
    Xiao D; Hu J; Zhang M; Li M; Wang G; Yao H
    Carbohydr Res; 2004 Aug; 339(11):1925-31. PubMed ID: 15261585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of 6-O-(4-alkoxytrityl)celluloses and their properties.
    Ifuku S; Kamitakahara H; Takano T; Tanaka F; Nakatsubo F
    Org Biomol Chem; 2004 Feb; 2(3):402-7. PubMed ID: 14747869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homogenous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution.
    Zhou J; Qin Y; Liu S; Zhang L
    Macromol Biosci; 2006 Jan; 6(1):84-9. PubMed ID: 16374774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlations between steric/thermochemical parameters and O-/N-acylation reactions of cellulose.
    Devarayan K; Hayashi T; Hachisu M; Araki J; Ohkawa K
    Carbohydr Polym; 2013 Apr; 94(1):468-78. PubMed ID: 23544564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.