These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32740840)

  • 21. Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning.
    Ying SC; Kocar BD; Griffis SD; Fendorf S
    Environ Sci Technol; 2011 Jul; 45(13):5572-9. PubMed ID: 21648436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Characterization of Pb2+ adsorption on the surface of birnessite treatment with Na4P2O7 at different pH and the study on the distribution of Mn(III) in the birnessite].
    Zhao W; Yin H; Liu F; Feng XH; Tan WF
    Huan Jing Ke Xue; 2011 Aug; 32(8):2477-84. PubMed ID: 22619981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remediation of As-contaminated soils using citrate extraction coupled with electrochemical removal.
    Yang X; Liu L; Wang Y; Qiu G
    Sci Total Environ; 2022 Apr; 817():153042. PubMed ID: 35032531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced oxidation of arsenite to arsenate using tunable K
    Hou J; Sha Z; Hartley W; Tan W; Wang M; Xiong J; Li Y; Ke Y; Long Y; Xue S
    Environ Pollut; 2018 Jul; 238():524-531. PubMed ID: 29605612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces.
    Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F
    Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cd(II) retention and remobilization on δ-MnO
    Sun Q; Cui PX; Zhu M; Fan TT; Ata-Ul-Karim ST; Gu JH; Wu S; Zhou DM; Wang YJ
    Environ Int; 2019 Sep; 130():104932. PubMed ID: 31238266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Jan; 68(1-2):39-53. PubMed ID: 14698870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.
    Zhao H; Zhu M; Li W; Elzinga EJ; Villalobos M; Liu F; Zhang J; Feng X; Sparks DL
    Environ Sci Technol; 2016 Feb; 50(4):1750-8. PubMed ID: 26745815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.
    Bai Y; Yang T; Liang J; Qu J
    Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Transformation of Birnessite by Fulvic Acid under Anoxic Conditions.
    Wang Q; Yang P; Zhu M
    Environ Sci Technol; 2018 Feb; 52(4):1844-1853. PubMed ID: 29356523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation.
    Lu H; Zhang W; Tao L; Liu F; Zhang J
    Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid.
    Shi R; Jia Y; Wang C; Yao S
    J Hazard Mater; 2009 Apr; 163(2-3):1129-33. PubMed ID: 18752889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].
    Wang Y; Tan WF; Feng XH; Qiu GH; Liu F
    Huan Jing Ke Xue; 2011 Oct; 32(10):3128-36. PubMed ID: 22279934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of environmental conditions on kinetics of arsenite oxidation by manganese-oxides.
    Fischel MH; Fischel JS; Lafferty BJ; Sparks DL
    Geochem Trans; 2015; 16():15. PubMed ID: 26388696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.