BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 32741816)

  • 41. The Potential Role of Dysregulated miRNAs in Alzheimer's Disease Pathogenesis and Progression.
    Patel AA; Ganepola GAP; Rutledge JR; Chang DH
    J Alzheimers Dis; 2019; 67(4):1123-1145. PubMed ID: 30714963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alzheimer's Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons.
    Harasta AE; Ittner LM
    Adv Neurobiol; 2017; 15():3-29. PubMed ID: 28674976
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease.
    Kazim SF; Iqbal K
    Mol Neurodegener; 2016 Jul; 11(1):50. PubMed ID: 27400746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging beta-amyloid therapies for the treatment of Alzheimer's disease.
    Conway KA; Baxter EW; Felsenstein KM; Reitz AB
    Curr Pharm Des; 2003; 9(6):427-47. PubMed ID: 12570807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesenchymal Stem Cells for Treating Alzheimer's Disease: Cell Therapy and Chemical Reagent Pretreatment.
    Zhang K; Du X; Gao Y; Liu S; Xu Y
    J Alzheimers Dis; 2023; 93(3):863-878. PubMed ID: 37125553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The neurobiology and pharmacotherapy of Alzheimer's disease.
    Felician O; Sandson TA
    J Neuropsychiatry Clin Neurosci; 1999; 11(1):19-31. PubMed ID: 9990552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of amyloid deposition in Alzheimer's disease.
    Beyreuther K; Bush AI; Dyrks T; Hilbich C; König G; Mönning U; Multhaup G; Prior R; Rumble B; Schubert W
    Ann N Y Acad Sci; 1991; 640():129-39. PubMed ID: 1776729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease.
    Ruzicka J; Kulijewicz-Nawrot M; Rodrigez-Arellano JJ; Jendelova P; Sykova E
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26821012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.
    Ager RR; Davis JL; Agazaryan A; Benavente F; Poon WW; LaFerla FM; Blurton-Jones M
    Hippocampus; 2015 Jul; 25(7):813-26. PubMed ID: 25530343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
    Sherman MA; LaCroix M; Amar F; Larson ME; Forster C; Aguzzi A; Bennett DA; Ramsden M; Lesné SE
    J Neurosci; 2016 Sep; 36(37):9647-58. PubMed ID: 27629715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alzheimer's Disease: Mechanism and Approach to Cell Therapy.
    Amemori T; Jendelova P; Ruzicka J; Urdzikova LM; Sykova E
    Int J Mol Sci; 2015 Nov; 16(11):26417-51. PubMed ID: 26556341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesenchymal stem cell therapies for Alzheimer's disease: preclinical studies.
    Zhao X; Li D; Zhang L; Niu Y; Wang W; Niu B
    Metab Brain Dis; 2021 Oct; 36(7):1687-1695. PubMed ID: 34213730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Infusion of hESC derived Immunity-and-matrix regulatory cells improves cognitive ability in early-stage AD mice.
    Liu J; Hou Z; Wu J; Liu K; Li D; Gao T; Liu W; An B; Sun Y; Mo F; Wang L; Wang Y; Hao J; Hu B
    Cell Prolif; 2021 Aug; 54(8):e13085. PubMed ID: 34232542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenylpropanoids and Alzheimer's disease: A potential therapeutic platform.
    Kolaj I; Imindu Liyanage S; Weaver DF
    Neurochem Int; 2018 Nov; 120():99-111. PubMed ID: 30098379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer's disease: precursor-product relationships in the derangement of neuronal function.
    Beyreuther K; Masters CL
    Brain Pathol; 1991 Jul; 1(4):241-51. PubMed ID: 1669714
    [No Abstract]   [Full Text] [Related]  

  • 56. Optimal mesenchymal stem cell delivery routes to enhance neurogenesis for the treatment of Alzheimer's disease: optimal MSCs delivery routes for the treatment of AD.
    Park SE; Lee NK; Na DL; Chang JW
    Histol Histopathol; 2018 Jun; 33(6):533-541. PubMed ID: 29185257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mesenchymal Stem Cells as Treatment for Behavioral Deficits and Neuropathology in the 5xFAD Mouse Model of Alzheimer's Disease.
    Matchynski-Franks JJ; Pappas C; Rossignol J; Reinke T; Fink K; Crane A; Twite A; Lowrance SA; Song C; Dunbar GL
    Cell Transplant; 2016; 25(4):687-703. PubMed ID: 26850119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human Alzheimer's disease gene expression signatures and immune profile in APP mouse models: a discrete transcriptomic view of Aβ plaque pathology.
    Rothman SM; Tanis KQ; Gandhi P; Malkov V; Marcus J; Pearson M; Stevens R; Gilliland J; Ware C; Mahadomrongkul V; O'Loughlin E; Zeballos G; Smith R; Howell BJ; Klappenbach J; Kennedy M; Mirescu C
    J Neuroinflammation; 2018 Sep; 15(1):256. PubMed ID: 30189875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease.
    Tan JZA; Gleeson PA
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):697-712. PubMed ID: 30639513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bone-Marrow-Derived Microglia-Like Cells Ameliorate Brain Amyloid Pathology and Cognitive Impairment in a Mouse Model of Alzheimer's Disease.
    Kawanishi S; Takata K; Itezono S; Nagayama H; Konoya S; Chisaki Y; Toda Y; Nakata S; Yano Y; Kitamura Y; Ashihara E
    J Alzheimers Dis; 2018; 64(2):563-585. PubMed ID: 29914020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.