BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32741922)

  • 1. Robust Nanoparticle Morphology and Size Analysis by Atomic Force Microscopy for Standardization.
    Sakai-Kato K; Takechi-Haraya Y; Chida T; Okazaki M; Kozaki M
    Chem Pharm Bull (Tokyo); 2020; 68(8):791-796. PubMed ID: 32741922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.
    Takechi-Haraya Y; Goda Y; Sakai-Kato K
    Anal Bioanal Chem; 2018 Feb; 410(5):1525-1531. PubMed ID: 29256078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and drug release studies of an antimycotic nanomedicine using HPLC, dynamic light scattering and atomic force microscopy.
    Watanabe A; Takagi M; Murata S; Kato M
    J Pharm Biomed Anal; 2018 Jan; 148():149-155. PubMed ID: 29028561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume transition and adhesion force of nanosized bifunctional spherical polyelectrolyte brushes observed by dynamic light scattering and atomic force microscopy.
    Huang S; Guo X; Li L; Dong Y
    J Phys Chem B; 2012 Aug; 116(33):10079-88. PubMed ID: 22834654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM study of the behavior of polystyrene and glass particles during the electrodeposition of copper.
    Dedeloudis C; Fransaer J
    Langmuir; 2004 Dec; 20(25):11030-8. PubMed ID: 15568855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Force Microscopic Imaging of mRNA-lipid Nanoparticles in Aqueous Medium.
    Takechi-Haraya Y; Usui A; Izutsu KI; Abe Y
    J Pharm Sci; 2023 Mar; 112(3):648-652. PubMed ID: 36462707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed Morphological Characterization of Nanocrystalline Active Ingredients in Solid Oral Dosage Forms Using Atomic Force Microscopy.
    Sakai-Kato K; Nanjo K; Takechi-Haraya Y; Goda Y; Okuda H; Izutsu KI
    AAPS PharmSciTech; 2019 Jan; 20(2):70. PubMed ID: 30631974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size measurement of nanoparticles using atomic force microscopy.
    Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF
    Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy.
    Guo D; Li J; Chang L; Luo J
    Langmuir; 2013 Jun; 29(23):6920-5. PubMed ID: 23725519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core@shell Poly(n-butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation.
    Bonetti S; Farina M; Mauri M; Koynov K; Butt HJ; Kappl M; Simonutti R
    Macromol Rapid Commun; 2016 Apr; 37(7):584-9. PubMed ID: 26822617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-scale observation of the surface of polystyrene particles by AFM.
    Yamamoto T; Fukushima T; Kanda Y; Higashitani K
    J Colloid Interface Sci; 2005 Dec; 292(2):392-6. PubMed ID: 16081078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure.
    Baalousha M; Lead JR
    Environ Sci Technol; 2012 Jun; 46(11):6134-42. PubMed ID: 22594655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.
    Egami K; Higashi K; Yamamoto K; Moribe K
    Mol Pharm; 2015 Aug; 12(8):2972-80. PubMed ID: 26106951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of transmission electron and atomic force microscopy techniques to determine volume equivalent diameter of submicrometer particles.
    Tumolva L; Park JY; Park K
    Microsc Res Tech; 2012 Apr; 75(4):505-12. PubMed ID: 21919129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.
    Varenne F; Makky A; Gaucher-Delmas M; Violleau F; Vauthier C
    Pharm Res; 2016 May; 33(5):1220-34. PubMed ID: 26864858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale compression of polymer microspheres by atomic force microscopy.
    Tan S; Sherman RL; Ford WT
    Langmuir; 2004 Aug; 20(17):7015-20. PubMed ID: 15301482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions.
    Zhao Z; Katai H; Higashi K; Ueda K; Kawakami K; Moribe K
    Mol Pharm; 2019 May; 16(5):2184-2198. PubMed ID: 30925218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single core-shell nanoparticle probes for non-invasive magnetic force microscopy.
    Uhlig T; Wiedwald U; Seidenstücker A; Ziemann P; Eng LM
    Nanotechnology; 2014 Jun; 25(25):255501. PubMed ID: 24896585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally derived sticking efficiencies of microparticles using atomic force microscopy.
    Cail TL; Hochella MF
    Environ Sci Technol; 2005 Feb; 39(4):1011-7. PubMed ID: 15773472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.