These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32742686)

  • 1. The unexpected narrowness of eccentric debris rings: a sign of eccentricity during the protoplanetary disc phase.
    Kennedy GM
    R Soc Open Sci; 2020 Jun; 7(6):200063. PubMed ID: 32742686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of sharp eccentric rings in debris disks with gas but without planets.
    Lyra W; Kuchner M
    Nature; 2013 Jul; 499(7457):184-7. PubMed ID: 23846656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.
    Rosotti GP; Juhasz A; Booth RA; Clarke CJ
    Mon Not R Astron Soc; 2016 Jul; 459(3):2790-2805. PubMed ID: 27279783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New HST data and modeling reveal a massive planetesimal collision around Fomalhaut.
    Gáspár A; Rieke GH
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9712-9722. PubMed ID: 32312810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision velocity of dust grains in self-gravitating protoplanetary discs.
    Booth RA; Clarke CJ
    Mon Not R Astron Soc; 2016 May; 458(3):2676-2693. PubMed ID: 27346980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO and H(3)(+) in the protoplanetary disk around the star HD141569.
    Brittain SD; Rettig TW
    Nature; 2002 Jul; 418(6893):57-9. PubMed ID: 12097903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planetary system formation in thermally evolving viscous protoplanetary discs.
    Nelson RP; Hellary P; Fendyke SM; Coleman G
    Philos Trans A Math Phys Eng Sci; 2014 Apr; 372(2014):20130074. PubMed ID: 24664913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dispersal of planet-forming discs: theory confronts observations.
    Ercolano B; Pascucci I
    R Soc Open Sci; 2017 Apr; 4(4):170114. PubMed ID: 28484640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lunar and terrestrial planet formation in the Grand Tack scenario.
    Jacobson SA; Morbidelli A
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130174. PubMed ID: 25114304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A backward-spinning star with two coplanar planets.
    Hjorth M; Albrecht S; Hirano T; Winn JN; Dawson RI; Zanazzi JJ; Knudstrup E; Sato B
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planet population synthesis: the role of stellar encounters.
    Ndugu N; Abedigamba OP; Andama G
    Mon Not R Astron Soc; 2022 May; 512(1):861-873. PubMed ID: 35308091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.
    Kennedy GM; Kenworthy MA; Pepper J; Rodriguez JE; Siverd RJ; Stassun KG; Wyatt MC
    R Soc Open Sci; 2017 Jan; 4(1):160652. PubMed ID: 28280566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dust dynamics in planet-forming discs in binary systems.
    Zagaria F; Rosotti GP; Alexander RD; Clarke CJ
    Eur Phys J Plus; 2023; 138(1):25. PubMed ID: 36686498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planet-planet scattering in the upsilon Andromedae system.
    Ford EB; Lystad V; Rasio FA
    Nature; 2005 Apr; 434(7035):873-6. PubMed ID: 15829958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for water in the rocky debris of a disrupted extrasolar minor planet.
    Farihi J; Gänsicke BT; Koester D
    Science; 2013 Oct; 342(6155):218-20. PubMed ID: 24115434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terrestrial planet and asteroid formation in the presence of giant planets. I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations.
    Kortenkamp SJ; Wetherill GW
    Icarus; 2000 Jan; 143(1):60-73. PubMed ID: 11543321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible?
    Morris MA; Desch SJ
    Astrobiology; 2009 Dec; 9(10):965-78. PubMed ID: 20041749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential softening and eccentricity dynamics in razor-thin, nearly-Keplerian discs.
    Sefilian AA; Rafikov RR
    Mon Not R Astron Soc; 2019 Sep; 489(3):4176-4195. PubMed ID: 33384461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A young massive planet in a star-disk system.
    Setiawan J; Henning T; Launhardt R; Müller A; Weise P; Kürster M
    Nature; 2008 Jan; 451(7174):38-41. PubMed ID: 18172492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
    Boss AP
    Astrophys J; 2000 Jun; 536(2):L101-L104. PubMed ID: 10859128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.