BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32742817)

  • 1. Identification and expression pattern of chemosensory genes in the transcriptome of
    Yan C; Sun X; Cao W; Li R; Zhao C; Sun Z; Liu W; Pan L
    PeerJ; 2020; 8():e9584. PubMed ID: 32742817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the protein expression profiles of Propsilocerus akamusi (Tokunaga) Malpighian tubules response to cadmium stress by iTRAQ coupled LC-MS/MS.
    Zheng X; Xie Z; Wang S; Lin P
    J Proteomics; 2017 Jul; 164():85-93. PubMed ID: 28571968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Propsilocerus akamusi (Diptera: Chironomidae) to the leachates from AMD-contaminated sediments: Implications for metal bioremediation of AMD-polluted areas.
    Zheng X; Li Y; Xu J; Lu Y
    Aquat Toxicol; 2024 Jan; 266():106795. PubMed ID: 38070394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chromosome level genome assembly of Propsilocerus akamusi to understand its response to heavy metal exposure.
    Sun X; Liu W; Li R; Zhao C; Pan L; Yan C
    Mol Ecol Resour; 2021 Aug; 21(6):1996-2012. PubMed ID: 33710757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening.
    Wang SN; Peng Y; Lu ZY; Dhiloo KH; Gu SH; Li RJ; Zhou JJ; Zhang YJ; Guo YY
    Int J Biol Sci; 2015; 11(7):737-51. PubMed ID: 26078716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ-based quantitative proteomic analysis identified Eno1 as a cadmium stress response gene in Propsilocerus akamusi (Tokunaga) hemolymph.
    Zheng X; Gao Y; Li W; Wang S
    Ecotoxicol Environ Saf; 2018 Dec; 165():126-135. PubMed ID: 30195204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury).
    Zhang LW; Kang K; Jiang SC; Zhang YN; Wang TT; Zhang J; Sun L; Yang YQ; Huang CC; Jiang LY; Ding DG
    PLoS One; 2016; 11(10):e0164729. PubMed ID: 27741298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes.
    Liu NY; Zhang T; Ye ZF; Li F; Dong SL
    Int J Biol Sci; 2015; 11(9):1036-48. PubMed ID: 26221071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae).
    Wang B; Liu Y; Wang GR
    BMC Genomics; 2017 Aug; 18(1):586. PubMed ID: 28784086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi.
    Liu W; Sun X; Sun W; Zhou A; Li R; Wang B; Li X; Yan C
    Aquat Toxicol; 2021 Oct; 239():105940. PubMed ID: 34455205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium exposure on tissue-specific cadmium accumulation and alteration of hemoglobin expression in the 4th-instar larvae of Propsilocerus akamusi (Tokunaga) under laboratory conditions.
    Zheng X; Xu Z; Qin G; Wu H; Wei H
    Ecotoxicol Environ Saf; 2017 Oct; 144():187-192. PubMed ID: 28623796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution.
    Liu W; Chang T; Zhao K; Sun X; Qiao H; Yan C; Wang Y
    Int J Biol Macromol; 2022 Dec; 223(Pt A):555-566. PubMed ID: 36356871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species delimitation and life stage association of
    Yu HJ; Lin XL; Zhang RL; Wang Q; Wang XH
    Zookeys; 2020; 975():79-86. PubMed ID: 33117065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate olfactory genes identified in Heortia vitessoides (Lepidoptera: Crambidae) by antennal transcriptome analysis.
    Cheng J; Wang CY; Lyu ZH; Chen JX; Tang LP; Lin T
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():117-130. PubMed ID: 30465940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae).
    Li X; Ju Q; Jie W; Li F; Jiang X; Hu J; Qu M
    PLoS One; 2015; 10(4):e0121504. PubMed ID: 25856077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate chemosensory genes by transcriptome analysis in Loxostege sticticalis Linnaeus.
    Wei HS; Li KB; Zhang S; Cao YZ; Yin J
    PLoS One; 2017; 12(4):e0174036. PubMed ID: 28423037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae).
    Yi JK; Yang S; Wang S; Wang J; Zhang XX; Liu Y; Xi JH
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Dec; 28():63-71. PubMed ID: 29980137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta.
    Zhang J; Wang B; Dong S; Cao D; Dong J; Walker WB; Liu Y; Wang G
    PLoS One; 2015; 10(2):e0117054. PubMed ID: 25659090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Expression Analysis of Chemosensory Receptor Genes in Bradysia odoriphaga (Diptera: Sciaridae).
    Zhao Y; Cui K; Li H; Ding J; Mu W; Zhou C
    J Econ Entomol; 2020 Feb; 113(1):435-450. PubMed ID: 31687766
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.