These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32743097)

  • 1. Nanomaterials in the advancement of hydrogen energy storage.
    Singh R; Altaee A; Gautam S
    Heliyon; 2020 Jul; 6(7):e04487. PubMed ID: 32743097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials At Near-Ambient Temperature.
    Sutton AL; Mardel JI; Hill MR
    Chemistry; 2024 Aug; 30(44):e202400717. PubMed ID: 38825571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.
    Gómez-Gualdrón DA; Wang TC; García-Holley P; Sawelewa RM; Argueta E; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33419-33428. PubMed ID: 28387498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous metal-organic frameworks for hydrogen storage.
    Zhao D; Wang X; Yue L; He Y; Chen B
    Chem Commun (Camb); 2022 Oct; 58(79):11059-11078. PubMed ID: 36112013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale engineering of solid-state materials for boosting hydrogen storage.
    Wang Y; Xue Y; Züttel A
    Chem Soc Rev; 2024 Jan; 53(2):972-1003. PubMed ID: 38111973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mg-MOF-74 Derived Defective Framework for Hydrogen Storage at Above-Ambient Temperature Assisted by Pt Catalyst.
    Liu S; Zhang Y; Zhu F; Liu J; Wan X; Liu R; Liu X; Shang JX; Yu R; Feng Q; Wang Z; Shui J
    Adv Sci (Weinh); 2024 May; 11(18):e2401868. PubMed ID: 38460160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production, storage, and transportation: recent advances.
    Rampai MM; Mtshali CB; Seroka NS; Khotseng L
    RSC Adv; 2024 Feb; 14(10):6699-6718. PubMed ID: 38405074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage.
    Cui B; Fu G
    Nanoscale; 2022 Feb; 14(5):1679-1699. PubMed ID: 35048101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Materials for Physical Hydrogen Storage: A Review.
    Le TH; Kim MP; Park CH; Tran QN
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38592009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage.
    Indra A; Song T; Paik U
    Adv Mater; 2018 Sep; 30(39):e1705146. PubMed ID: 29984451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage.
    Zheng J; Wang CG; Zhou H; Ye E; Xu J; Li Z; Loh XJ
    Research (Wash D C); 2021; 2021():3750689. PubMed ID: 33623916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials with Nanoscale Porosity: Energy and Environmental Applications.
    Bhanja P; Bhaumik A
    Chem Rec; 2019 Feb; 19(2-3):333-346. PubMed ID: 29962057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Characterization of Metal Nanoparticle Infiltrated Mesoporous Metal-Organic Frameworks.
    Varghese JR; Wendt C; Dix FB; Aulakh D; Sazama U; Yakovenko AA; Fröba M; Wochnowski J; Goia DV; Wriedt M
    Inorg Chem; 2021 Sep; 60(17):13000-13010. PubMed ID: 34415750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials.
    Sun Q; Wang N; Xu Q; Yu J
    Adv Mater; 2020 Nov; 32(44):e2001818. PubMed ID: 32638425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks.
    Sumida K; Stück D; Mino L; Chai JD; Bloch ED; Zavorotynska O; Murray LJ; Dincă M; Chavan S; Bordiga S; Head-Gordon M; Long JR
    J Am Chem Soc; 2013 Jan; 135(3):1083-91. PubMed ID: 23244036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.