These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32743178)
1. Exploring the Reaction Mechanisms of Furfural Hydrodeoxygenation on a CuNiCu(111) Bimetallic Catalyst Surface from Computation. Shi Y ACS Omega; 2020 Jul; 5(29):18040-18049. PubMed ID: 32743178 [TBL] [Abstract][Full Text] [Related]
2. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface. Ren G; Wang G; Mei H; Xu Y; Huang L Phys Chem Chem Phys; 2019 Nov; 21(42):23685-23696. PubMed ID: 31631194 [TBL] [Abstract][Full Text] [Related]
3. Theoretical Study of the Mechanism of Furfural Conversion on the NiCuCu(111) Surface. Shi Y ACS Omega; 2019 Oct; 4(17):17447-17456. PubMed ID: 31656917 [TBL] [Abstract][Full Text] [Related]
4. A DFT study of direct furfural conversion to 2-methylfuran on the Ru/Co Dong H; Zheng Y; Hu P Phys Chem Chem Phys; 2019 Jan; 21(3):1597-1605. PubMed ID: 30620016 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts. Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073 [TBL] [Abstract][Full Text] [Related]
6. DFT study of furfural conversion on a Re/Pt bimetallic surface: synergetic effect on the promotion of hydrodeoxygenation. Dong H; Zheng Y; Hu P Phys Chem Chem Phys; 2019 Apr; 21(16):8384-8393. PubMed ID: 30942235 [TBL] [Abstract][Full Text] [Related]
7. Hydrodeoxygenation of furfural to 2-methylfuran over Cu-Co confined by hollow carbon cage catalyst enhanced by optimized charge transfer and alloy structure. Dou S; Ma L; Dong Y; Zhu Q; Kong X J Colloid Interface Sci; 2024 Jun; 663():345-357. PubMed ID: 38412720 [TBL] [Abstract][Full Text] [Related]
8. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products. Pino N; López D; Espinal JF J Mol Model; 2019 Jan; 25(1):26. PubMed ID: 30612236 [TBL] [Abstract][Full Text] [Related]
9. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon. Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491 [TBL] [Abstract][Full Text] [Related]
10. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst. Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient and Selective Hydrogenation of Biomass-Derived Furfural Using Interface-Active Rice Husk-Based Porous Carbon-Supported NiCu Alloy Catalysts. Ding Z; Gao Y; Hu L; Yang X Molecules; 2024 Jun; 29(11):. PubMed ID: 38893516 [TBL] [Abstract][Full Text] [Related]
12. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts. Taylor MJ; Jiang L; Reichert J; Papageorgiou AC; Beaumont SK; Wilson K; Lee AF; Barth JV; Kyriakou G J Phys Chem C Nanomater Interfaces; 2017 Apr; 121(15):8490-8497. PubMed ID: 29225721 [TBL] [Abstract][Full Text] [Related]
13. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Pang SH; Schoenbaum CA; Schwartz DK; Medlin JW Nat Commun; 2013; 4():2448. PubMed ID: 24025780 [TBL] [Abstract][Full Text] [Related]
14. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Chen X; Zhang L; Zhang B; Guo X; Mu X Sci Rep; 2016 Jun; 6():28558. PubMed ID: 27328834 [TBL] [Abstract][Full Text] [Related]
16. Electrocatalytic reduction of furfural to furfuryl alcohol using carbon nanofibers supported zinc cobalt bimetallic oxide with surface-derived zinc vacancies in alkaline medium. Qin M; Fan S; Li X; Duan J; Chen G J Colloid Interface Sci; 2024 Apr; 660():800-809. PubMed ID: 38277837 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts. Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530 [TBL] [Abstract][Full Text] [Related]
18. Solvent Tunes the Selectivity of Hydrogenation Reaction over α-MoC Catalyst. Deng Y; Gao R; Lin L; Liu T; Wen XD; Wang S; Ma D J Am Chem Soc; 2018 Oct; 140(43):14481-14489. PubMed ID: 30350955 [TBL] [Abstract][Full Text] [Related]
20. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO Xia Q; Xia Y; Xi J; Liu X; Zhang Y; Guo Y; Wang Y ChemSusChem; 2017 Feb; 10(4):747-753. PubMed ID: 27863146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]