These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3274339)

  • 41. PGE2 reduces nephrotoxicity and immunosuppression of cyclosporine in rats.
    Ryffel B; Donatsch P; Hiestand P; Mihatsch MJ
    Clin Nephrol; 1986; 25 Suppl 1():S95-9. PubMed ID: 3458551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Age and dose dependence of cyclosporine G nephrotoxicity in BALB/c mice.
    Masri M; Naiem M; Daar AS
    Transplant Proc; 1987 Feb; 19(1 Pt 2):1212-3. PubMed ID: 3274307
    [No Abstract]   [Full Text] [Related]  

  • 43. Metabolism of glutamine in rat kidney mitochondria in the presence of aminooxyacetate.
    Strzelecki T; Olejnik B; Rogulski J
    Acta Biochim Pol; 1980; 27(3-4):265-72. PubMed ID: 7269972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of reactive oxygen formation in the cyclosporin-A-mediated impairment of renal functions.
    Wolf A; Clemann N; Frieauff W; Ryffel B; Cordier A
    Transplant Proc; 1994 Oct; 26(5):2902-7. PubMed ID: 7940917
    [No Abstract]   [Full Text] [Related]  

  • 45. [Electron microscopic observation of the nephrotoxicity in rats receiving cyclosporine].
    Kimura S; Hasegawa S; Nakazono M; Tazaki H
    Nihon Hinyokika Gakkai Zasshi; 1987 Apr; 78(4):563-71. PubMed ID: 3669468
    [No Abstract]   [Full Text] [Related]  

  • 46. In vitro and in vivo effects of quinidine on the kidneys in Fischer-344 rats.
    Agarwal AK; Rao SS
    Res Commun Chem Pathol Pharmacol; 1993 Nov; 82(2):143-50. PubMed ID: 8303084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations in renal cortex following ischemic injury. II. PAH uptake, O2 consumption, and water content in slices of cortex after ischemia or autolysis.
    Reimer KA; Jennings RB
    Lab Invest; 1971 Aug; 25(2):185-95. PubMed ID: 5559309
    [No Abstract]   [Full Text] [Related]  

  • 48. Cyclosporine-induced alterations in renal, intrarenal, and pancreatic blood flow.
    Youngelman DF; Kahng KU; Dresner LS; Munshi IA; Wait RB
    Transplant Proc; 1991 Feb; 23(1 Pt 1):718-20. PubMed ID: 1990663
    [No Abstract]   [Full Text] [Related]  

  • 49. Cyclosporine effects on isolated membranes, proximal tubule cells, and interstitium of the kidney.
    Humes HD; Jackson NM
    Transplant Proc; 1988 Jun; 20(3 Suppl 3):748-58. PubMed ID: 3388513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact on energy metabolism of quantitative and functional cyclosporine-induced damage of kidney mitochondria.
    Aupetit B; Ghazi A; Blanchouin N; Toury R; Shechter E; Legrand JC
    Biochim Biophys Acta; 1988 Dec; 936(3):325-31. PubMed ID: 2848579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effects of trimetazidine on altered functions of rat kidney induced by cyclosporine].
    Simon N; Morin C; Bruguerolle B; Tillement JP
    Therapie; 2001; 56(5):583-7. PubMed ID: 11806297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is the inhibition of oxidative phosphorylation chains in kidney mitochondria responsible for cyclosporine nephrotoxicity?
    Zenatti M; Aupetit B; Ghazzi A; Shechter E; Michel A; Nataf V; Aymard P; Legrand JC
    Transplant Proc; 1988 Jun; 20(3 Suppl 3):700-4. PubMed ID: 3388507
    [No Abstract]   [Full Text] [Related]  

  • 53. Renal morphology and function and urine electrolytes in experimental acute renal failure produced by cyclosporine and ischemia.
    Kone BC; Racusen LC; Whelton A; Solez K
    Uremia Invest; 1985-1986; 9(2):119-26. PubMed ID: 3842027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the immunosuppressive and nephrotoxic effects of cyclosporin G.
    Hoyt EG; Hagberg RC; Billingham ME; Baldwin JC; Jamieson SW
    J Heart Transplant; 1988; 7(2):111-7. PubMed ID: 3284981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on nephrotoxicity of cyclosporine in human renal allograft and rat.
    Morozumi K; Shinmura I; Gotoh I; Yoshida A; Fujinami T; Uchida K; Yamada N; Tominaga Y; Nakanishi Y; Kanoh T
    Dev Toxicol Environ Sci; 1986; 14():153-6. PubMed ID: 3549247
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect of cyclosporine on renal ischemic injury.
    Bia MJ; Tyler KA
    Transplantation; 1987 Jun; 43(6):800-4. PubMed ID: 3590299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early morphological and biochemical changes during 2-Br-(diglutathion-S-yl)hydroquinone-induced nephrotoxicity.
    Rivera MI; Jones TW; Lau SS; Monks TJ
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):239-50. PubMed ID: 7940539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early lithium-induced nephrotoxicity and changes of renal hemodynamics in rats.
    Kersten L; Bartha J; Bräunlich H
    Biomed Biochim Acta; 1987; 46(11):845-53. PubMed ID: 3446211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental cyclosporine nephrotoxicity: risk of concomitant chemotherapy.
    Ryffel B; Müller AM; Mihatsch MJ
    Clin Nephrol; 1986; 25 Suppl 1():S121-5. PubMed ID: 3708922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reflections on use of the renal biopsy as the "gold standard" in distinguishing transplant rejection from cyclosporine nephrotoxicity.
    Solez K; McGraw DJ; Beschorner WE; Kone BC; Racusen LC; Whelton A; Burdick JF
    Transplant Proc; 1985 Aug; 17(4 Suppl 1):123-33. PubMed ID: 3927535
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.