These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 32743578)
21. Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk. Chen P; Wang J; Xu X; Li Y; Zhu Y; Li X; Li M; Hao P Comput Biol Chem; 2022 Feb; 96():107613. PubMed ID: 34896769 [TBL] [Abstract][Full Text] [Related]
22. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
23. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Alshahrani M; Gupta G; Xiao S; Tao P; Verkhivker G Viruses; 2023 Oct; 15(10):. PubMed ID: 37896850 [TBL] [Abstract][Full Text] [Related]
25. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Verkhivker G Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158276 [TBL] [Abstract][Full Text] [Related]
26. Use of recombinant S1 protein with hFc for analysis of SARS-CoV-2 adsorption and evaluation of drugs that inhibit entry into VERO E6 cells. Couto JCM; Vidal T; Decker ER; Santurio JM; Mello CF; Pillat MM Immunol Lett; 2023 Nov; 263():105-112. PubMed ID: 37683695 [TBL] [Abstract][Full Text] [Related]
27. Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. Koley T; Madaan S; Chowdhury SR; Kumar M; Kaur P; Singh TP; Ethayathulla AS 3 Biotech; 2021 Feb; 11(2):109. PubMed ID: 33552834 [TBL] [Abstract][Full Text] [Related]
28. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700 [TBL] [Abstract][Full Text] [Related]
29. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. Freitas FC; Ferreira PHB; Favaro DC; Oliveira RJ J Chem Inf Model; 2021 Mar; 61(3):1226-1243. PubMed ID: 33619962 [TBL] [Abstract][Full Text] [Related]
30. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Hussain M; Jabeen N; Raza F; Shabbir S; Baig AA; Amanullah A; Aziz B J Med Virol; 2020 Sep; 92(9):1580-1586. PubMed ID: 32249956 [TBL] [Abstract][Full Text] [Related]
31. Peimine inhibits variants of SARS-CoV-2 cell entry via blocking the interaction between viral spike protein and ACE2. Wang WJ; Chen Y; Su WC; Liu YY; Shen WJ; Chang WC; Huang ST; Lin CW; Wang YC; Yang CS; Hou MH; Chou YC; Wu YC; Wang SC; Hung MC J Food Biochem; 2022 Oct; 46(10):e14354. PubMed ID: 35894128 [TBL] [Abstract][Full Text] [Related]
32. Rapid Profiling of the Glycosylation Effects on the Binding of SARS-CoV-2 Spike Protein to Angiotensin-Converting Enzyme 2 Using MALDI-MS with High Mass Detection. Zhou Y; Tan C; Zenobi R Anal Chem; 2024 Feb; 96(5):1898-1905. PubMed ID: 38279913 [TBL] [Abstract][Full Text] [Related]
33. Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Shajahan A; Archer-Hartmann S; Supekar NT; Gleinich AS; Heiss C; Azadi P Glycobiology; 2021 May; 31(4):410-424. PubMed ID: 33135055 [TBL] [Abstract][Full Text] [Related]
34. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Trbojević-Akmačić I; Petrović T; Lauc G Glycoconj J; 2021 Oct; 38(5):611-623. PubMed ID: 34542788 [TBL] [Abstract][Full Text] [Related]
35. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides. Llewellyn GN; Chen HY; Rogers GL; Huang X; Sell PJ; Henley JE; Cannon PM J Virol; 2023 Aug; 97(8):e0068423. PubMed ID: 37555663 [TBL] [Abstract][Full Text] [Related]
37. Glycosylation is a key in SARS-CoV-2 infection. Reis CA; Tauber R; Blanchard V J Mol Med (Berl); 2021 Aug; 99(8):1023-1031. PubMed ID: 34023935 [TBL] [Abstract][Full Text] [Related]
38. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
39. Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain. Bernardi A; Huang Y; Harris B; Xiong Y; Nandi S; McDonald KA; Faller R PLoS One; 2020; 15(8):e0237295. PubMed ID: 32756606 [TBL] [Abstract][Full Text] [Related]
40. Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation. Rodriguez JA; Gonzalez J; Arboleda-Bustos CE; Mendoza N; Martinez C; Pinzon A Chem Biol Interact; 2022 Dec; 368():110244. PubMed ID: 36336003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]