These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32743578)

  • 41. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro.
    Huang HC; Lai YJ; Liao CC; Yang WF; Huang KB; Lee IJ; Chou WC; Wang SH; Wang LH; Hsu JM; Sun CP; Kuo CT; Wang J; Hsiao TC; Yang PJ; Lee TA; Huang W; Li FA; Shen CY; Lin YL; Tao MH; Li CW
    EBioMedicine; 2021 Dec; 74():103712. PubMed ID: 34839261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction.
    Cao W; Dong C; Kim S; Hou D; Tai W; Du L; Im W; Zhang XF
    Biophys J; 2021 Mar; 120(6):1011-1019. PubMed ID: 33607086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Utility of Native MS for Understanding the Mechanism of Action of Repurposed Therapeutics in COVID-19: Heparin as a Disruptor of the SARS-CoV-2 Interaction with Its Host Cell Receptor.
    Yang Y; Du Y; Kaltashov IA
    Anal Chem; 2020 Aug; 92(16):10930-10934. PubMed ID: 32678978
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolutionary Arms Race between Virus and Host Drives Genetic Diversity in Bat Severe Acute Respiratory Syndrome-Related Coronavirus Spike Genes.
    Guo H; Hu BJ; Yang XL; Zeng LP; Li B; Ouyang S; Shi ZL
    J Virol; 2020 Sep; 94(20):. PubMed ID: 32699095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2.
    Huo J; Le Bas A; Ruza RR; Duyvesteyn HME; Mikolajek H; Malinauskas T; Tan TK; Rijal P; Dumoux M; Ward PN; Ren J; Zhou D; Harrison PJ; Weckener M; Clare DK; Vogirala VK; Radecke J; Moynié L; Zhao Y; Gilbert-Jaramillo J; Knight ML; Tree JA; Buttigieg KR; Coombes N; Elmore MJ; Carroll MW; Carrique L; Shah PNM; James W; Townsend AR; Stuart DI; Owens RJ; Naismith JH
    Nat Struct Mol Biol; 2020 Sep; 27(9):846-854. PubMed ID: 32661423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19.
    Zhang S; Liu Y; Wang X; Yang L; Li H; Wang Y; Liu M; Zhao X; Xie Y; Yang Y; Zhang S; Fan Z; Dong J; Yuan Z; Ding Z; Zhang Y; Hu L
    J Hematol Oncol; 2020 Sep; 13(1):120. PubMed ID: 32887634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies.
    Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R
    J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site-specific characterization of SARS-CoV-2 spike glycoprotein receptor-binding domain.
    Antonopoulos A; Broome S; Sharov V; Ziegenfuss C; Easton RL; Panico M; Dell A; Morris HR; Haslam SM
    Glycobiology; 2021 Apr; 31(3):181-187. PubMed ID: 32886791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prevention of SARS-CoV-2 cell entry: insight from
    Gyebi GA; Adegunloye AP; Ibrahim IM; Ogunyemi OM; Afolabi SO; Ogunro OB
    J Biomol Struct Dyn; 2022 Mar; 40(5):2121-2145. PubMed ID: 33089728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism.
    Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S
    Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of
    Huang C; Tan Z; Zhao K; Zou W; Wang H; Gao H; Sun S; Bu D; Chai W; Li Y
    iScience; 2021 Nov; 24(11):103272. PubMed ID: 34661088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-Based Development of SARS-CoV-2 Spike Interactors.
    Squeglia F; Romano M; Esposito L; Barra G; Campiglia P; Sala M; Scala MC; Ruggiero A; Berisio R
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetics and IC50 based epitope screening in SARS CoV-2 (COVID 19) spike protein by immunoinformatic analysis implicating for a suitable vaccine development.
    Banerjee A; Santra D; Maiti S
    J Transl Med; 2020 Jul; 18(1):281. PubMed ID: 32650788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The flexibility of ACE2 in the context of SARS-CoV-2 infection.
    Barros EP; Casalino L; Gaieb Z; Dommer AC; Wang Y; Fallon L; Raguette L; Belfon K; Simmerling C; Amaro RE
    Biophys J; 2021 Mar; 120(6):1072-1084. PubMed ID: 33189680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2.
    Larue RC; Xing E; Kenney AD; Zhang Y; Tuazon JA; Li J; Yount JS; Li PK; Sharma A
    Bioconjug Chem; 2021 Jan; 32(1):215-223. PubMed ID: 33356169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant.
    Ren W; Zhang Y; Rao J; Wang Z; Lan J; Liu K; Zhang X; Hu X; Yang C; Zhong G; Zhang R; Wang X; Shan C; Ding Q
    mBio; 2023 Apr; 14(2):e0041623. PubMed ID: 37010428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2.
    Liu Y; Hu G; Wang Y; Ren W; Zhao X; Ji F; Zhu Y; Feng F; Gong M; Ju X; Zhu Y; Cai X; Lan J; Guo J; Xie M; Dong L; Zhu Z; Na J; Wu J; Lan X; Xie Y; Wang X; Yuan Z; Zhang R; Ding Q
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33658332
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses.
    Ramírez Hernández E; Hernández-Zimbrón LF; Martínez Zúñiga N; Leal-García JJ; Ignacio Hernández V; Ucharima-Corona LE; Pérez Campos E; Zenteno E
    Viral Immunol; 2021 Apr; 34(3):165-173. PubMed ID: 33605822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2).
    Tripathi N; Goel B; Bhardwaj N; Vishwakarma RA; Jain SK
    ACS Omega; 2022 Aug; 7(31):27038-27051. PubMed ID: 35937682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis of the American mink ACE2 binding by Y453F trimeric spike glycoproteins of SARS-CoV-2.
    Ahn H; Calderon BM; Fan X; Gao Y; Horgan NL; Jiang N; Blohm DS; Hossain J; Rayyan NWK; Osman SH; Lin X; Currier M; Steel J; Wentworth DE; Zhou B; Liang B
    J Med Virol; 2023 Oct; 95(10):e29163. PubMed ID: 37842796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.