BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32743824)

  • 1. Calendering-Compatible Macroporous Architecture for Silicon-Graphite Composite toward High-Energy Lithium-Ion Batteries.
    Son Y; Kim N; Lee T; Lee Y; Ma J; Chae S; Sung J; Cha H; Yoo Y; Cho J
    Adv Mater; 2020 Sep; 32(37):e2003286. PubMed ID: 32743824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
    Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y
    ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes.
    Wu H; Jiang Y; Liu W; Wen H; Dong S; Chen H; Su L; Wang L
    Front Chem; 2022; 10():882681. PubMed ID: 35464200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries.
    Wang J; Liao L; Li Y; Zhao J; Shi F; Yan K; Pei A; Chen G; Li G; Lu Z; Cui Y
    Nano Lett; 2018 Nov; 18(11):7060-7065. PubMed ID: 30339401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
    Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode.
    Yu P; Li Z; Han M; Yu J
    Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes.
    Ma J; Sung J; Hong J; Chae S; Kim N; Choi SH; Nam G; Son Y; Kim SY; Ko M; Cho J
    Nat Commun; 2019 Jan; 10(1):475. PubMed ID: 30696835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries.
    Karuppiah S; Keller C; Kumar P; Jouneau PH; Aldakov D; Ducros JB; Lapertot G; Chenevier P; Haon C
    ACS Nano; 2020 Sep; 14(9):12006-12015. PubMed ID: 32902949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries.
    Xu J; Yin Q; Li X; Tan X; Liu Q; Lu X; Cao B; Yuan X; Li Y; Shen L; Lu Y
    Nano Lett; 2022 Apr; 22(7):3054-3061. PubMed ID: 35315677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and Optimization of Silicon-Iron-Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery.
    Alaboina PK; Cho JS; Cho SJ
    Nanomicro Lett; 2017; 9(4):41. PubMed ID: 30393736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes.
    Jia H; Li X; Song J; Zhang X; Luo L; He Y; Li B; Cai Y; Hu S; Xiao X; Wang C; Rosso KM; Yi R; Patel R; Zhang JG
    Nat Commun; 2020 Mar; 11(1):1474. PubMed ID: 32193387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes.
    An W; Gao B; Mei S; Xiang B; Fu J; Wang L; Zhang Q; Chu PK; Huo K
    Nat Commun; 2019 Mar; 10(1):1447. PubMed ID: 30926799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes.
    Kim N; Chae S; Ma J; Ko M; Cho J
    Nat Commun; 2017 Oct; 8(1):812. PubMed ID: 28993658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Si-Cu
    Pei S; Guo J; He Z; Huang LA; Lu T; Gong J; Shao H; Wang J
    Chemistry; 2020 May; 26(27):6006-6016. PubMed ID: 32073696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical Approach to Enhance Compatibility in Silicon/Graphite Composites to Enable High-Capacity Li-Ion Battery Anodes.
    Naboka O; Yim CH; Abu-Lebdeh Y
    ACS Omega; 2021 Feb; 6(4):2644-2654. PubMed ID: 33553882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes.
    Yeom SJ; Lee C; Kang S; Wi TU; Lee C; Chae S; Cho J; Shin DO; Ryu J; Lee HW
    Nano Lett; 2019 Dec; 19(12):8793-8800. PubMed ID: 31675476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced lithium storage performance of porous Si/C composite anodes using a recrystallized NaCl template.
    Hong Y; Dong H; Li J; Hu Q; Tang Z; Ouyang J; Wang X; Xiang D
    Dalton Trans; 2021 Mar; 50(8):2815-2823. PubMed ID: 33533353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries.
    Chae S; Choi SH; Kim N; Sung J; Cho J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):110-135. PubMed ID: 30887635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.