BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32743867)

  • 1. J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading.
    Liu Y; Yang G; Jin S; Zhang R; Chen P; Tengjisi ; Wang L; Chen D; Weitz DA; Zhao CX
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20065-20074. PubMed ID: 32743867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy.
    Wang C; Wang Z; Zhao X; Yu F; Quan Y; Cheng Y; Yuan H
    Acta Biomater; 2019 Feb; 85():218-228. PubMed ID: 30557697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging.
    Senthilkumar T; Zhou L; Gu Q; Liu L; Lv F; Wang S
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13114-13119. PubMed ID: 30110129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles.
    Zou P; Chen H; Paholak HJ; Sun D
    Mol Pharm; 2013 Nov; 10(11):4185-94. PubMed ID: 24033270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired core-shell silica nanoparticles monitoring extra- and intra-cellular drug release.
    Tengjisi ; Liu Y; Zou D; Yang G; Zhao CX
    J Colloid Interface Sci; 2022 Oct; 624():242-250. PubMed ID: 35660893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the interaction of alginate-based core-shell nanocarriers with keratinocytes in vitro.
    Nguyen HTP; Allard-Vannier E; Gaillard C; Eddaoudi I; Miloudi L; Soucé M; Chourpa I; Munnier E
    Colloids Surf B Biointerfaces; 2016 Jun; 142():272-280. PubMed ID: 26962764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-conjugated pyrrole-based polymers: one-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery.
    Moquin A; Hanna R; Liang T; Erguven H; Gran ER; Arndtsen BA; Maysinger D; Kakkar A
    Chem Commun (Camb); 2019 Aug; 55(66):9829-9832. PubMed ID: 31363730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface.
    Zhao T; Masuda T; Miyoshi E; Takai M
    Anal Chem; 2020 Oct; 92(19):13271-13280. PubMed ID: 32900193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules.
    Simonsson C; Bastiat G; Pitorre M; Klymchenko AS; Béjaud J; Mély Y; Benoit JP
    Eur J Pharm Biopharm; 2016 Jan; 98():47-56. PubMed ID: 26522878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite fluorescent nanoparticles for biomedical imaging.
    Pansare VJ; Bruzek MJ; Adamson DH; Anthony J; Prud'homme RK
    Mol Imaging Biol; 2014 Apr; 16(2):180-8. PubMed ID: 24129739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer.
    Krüger HR; Schütz I; Justies A; Licha K; Welker P; Haucke V; Calderón M
    J Control Release; 2014 Nov; 194():189-96. PubMed ID: 25176577
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Dong Y; Du P; Liu P
    Int J Pharm; 2020 Oct; 588():119723. PubMed ID: 32755688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.
    Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D
    Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-responsive FRET-based polymer dot with BODIPY for fluorescence imaging-guided chemotherapy of tumor.
    Kim YK; Lee JE; Ryplida B; Choi CA; Mazrad ZAI; Lee G; Lee S; In I; Jeong JH; Park SY
    Eur J Pharm Biopharm; 2018 Nov; 132():200-210. PubMed ID: 30266668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic fluorescent polymer core-shell nanoparticles for encapsulation, delivery, and non-invasively tracking the intracellular release of siRNA.
    Yu JC; Zhu S; Feng PJ; Qian CG; Huang J; Sun MJ; Shen QD
    Chem Commun (Camb); 2015 Feb; 51(14):2976-9. PubMed ID: 25597349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release.
    Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S
    Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and Matching Polymers with Drugs to Improve Drug Incorporation and Retention in Nanoparticles.
    Animasawun RK; Taresco V; Swainson SME; Suksiriworapong J; Walker DA; Garnett MC
    Mol Pharm; 2020 Jun; 17(6):2083-2098. PubMed ID: 32348676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.