These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32744516)

  • 1. Direct-Coupled Electroretinogram (DC-ERG) for Recording the Light-Evoked Electrical Responses of the Mouse Retinal Pigment Epithelium.
    Miyagishima KJ; Zhang C; Malechka VV; Bharti K; Li W
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32744516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-evoked responses of the retinal pigment epithelium: changes accompanying photoreceptor loss in the mouse.
    Samuels IS; Sturgill GM; Grossman GH; Rayborn ME; Hollyfield JG; Peachey NS
    J Neurophysiol; 2010 Jul; 104(1):391-402. PubMed ID: 20484527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive recording and response characteristics of the rat dc-electroretinogram.
    Peachey NS; Stanton JB; Marmorstein AD
    Vis Neurosci; 2002; 19(6):693-701. PubMed ID: 12688665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.
    Samuels IS; Lee CA; Petrash JM; Peachey NS; Kern TS
    Vis Neurosci; 2012 Nov; 29(6):267-74. PubMed ID: 23101909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models.
    Yu M; Peachey NS
    Methods Mol Biol; 2018; 1753():103-113. PubMed ID: 29564784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes.
    Samuels IS; Bell BA; Pereira A; Saxon J; Peachey NS
    J Neurophysiol; 2015 Feb; 113(4):1085-99. PubMed ID: 25429122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina.
    Kinoshita J; Peachey NS
    Curr Protoc Mouse Biol; 2018 Mar; 8(1):1-16. PubMed ID: 30040236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between the retinal pigment epithelium and the neural retina.
    Steinberg RH
    Doc Ophthalmol; 1985 Oct; 60(4):327-46. PubMed ID: 3905312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt increases photoreceptor-dependent responses of the chick retinal pigment epithelium.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3041-52. PubMed ID: 1938280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-evoked responses of the mouse retinal pigment epithelium.
    Wu J; Peachey NS; Marmorstein AD
    J Neurophysiol; 2004 Mar; 91(3):1134-42. PubMed ID: 14614107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in visual function in cystathionine-beta-synthase mutant mice, a model of hyperhomocysteinemia.
    Yu M; Sturgill-Short G; Ganapathy P; Tawfik A; Peachey NS; Smith SB
    Exp Eye Res; 2012 Mar; 96(1):124-31. PubMed ID: 22197750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H; Vinberg F; Pitkänen M; Kommonen B; Koskelainen A
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5653-64. PubMed ID: 22743325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-evoked modulation of basolateral membrane Cl- conductance in chick retinal pigment epithelium: the light peak and fast oscillation.
    Gallemore RP; Steinberg RH
    J Neurophysiol; 1993 Oct; 70(4):1669-80. PubMed ID: 8283222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of an alternating current amplifier when recording the ERG c-wave to evaluate the function of retinal pigment epithelial cells in rats.
    Umeya N; Miyawaki I; Inada H
    Doc Ophthalmol; 2022 Oct; 145(2):147-155. PubMed ID: 35895211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex vivo electroretinograms made easy: performing ERGs using 3D printed components.
    Bonezzi PJ; Tarchick MJ; Renna JM
    J Physiol; 2020 Nov; 598(21):4821-4842. PubMed ID: 32886799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No Difference Between Age-Matched Male and Female C57BL/6J Mice in Photopic and Scotopic Electroretinogram a- and b-Wave Amplitudes or in Peak Diurnal Outer Segment Phagocytosis by the Retinal Pigment Epithelium.
    Mazzoni F; Tombo T; Finnemann SC
    Adv Exp Med Biol; 2019; 1185():507-511. PubMed ID: 31884662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):656-63. PubMed ID: 8113017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraretinal analysis of the threshold dark-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1221-32. PubMed ID: 2746322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.