These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32744531)

  • 41. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning.
    Gargiulo P; Árnadóttir I; Gíslason M; Edmunds K; Ólafsson I
    J Healthc Eng; 2017; 2017():. PubMed ID: 29068642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training.
    Grosch AS; Schröder T; Schröder T; Onken J; Picht T
    Acta Neurochir (Wien); 2020 Aug; 162(8):1957-1965. PubMed ID: 32385637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intraoperative intracerebral MRI-guided navigation for accurate targeting in nonhuman primates.
    Emborg ME; Joers V; Fisher R; Brunner K; Carter V; Ross C; Raghavan R; Brady M; Raschke J; Kubota K; Alexander A
    Cell Transplant; 2010; 19(12):1587-97. PubMed ID: 20587170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time determination of skull thickness for a manually-navigated synergistic trepanation tool.
    Korff A; Follmann A; Winter L; de la Fuente M; Schmieder K; Radermacher K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2300-3. PubMed ID: 21096796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intraoperative magnetic resonance image guidance in neurosurgery.
    Lewin JS; Metzger A; Selman WR
    J Magn Reson Imaging; 2000 Oct; 12(4):512-24. PubMed ID: 11042632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons.
    Waran V; Narayanan V; Karuppiah R; Owen SL; Aziz T
    J Neurosurg; 2014 Feb; 120(2):489-92. PubMed ID: 24321044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-Dimensional Volume Rendering: An Underutilized Tool in Neurosurgery.
    Jha DK; Khera P; Bhaskar S; Garg M
    World Neurosurg; 2019 Oct; 130():485-492. PubMed ID: 31306842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A compact stereotactic system for image-guided surgical intervention.
    Rusheen AE; Barath AS; Goyal A; Barnett JH; Gifford BT; Bennet KE; Blaha CD; Goerss SJ; Oh Y; Lee KH
    J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33142275
    [No Abstract]   [Full Text] [Related]  

  • 49. Low-cost and open-source three-dimensional (3D) printing in neurosurgery: A pilot experiment using direct drive modification to produce multi-material neuroanatomical models.
    Sidabutar R; Yudha TW; Sutiono AB; Huda F; Faried A
    Clin Neurol Neurosurg; 2023 May; 228():107684. PubMed ID: 36996673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From imaging to precision: low cost and accurate determination of stereotactic coordinates for brain surgery
    Pedrosa LRR; Leal LCP; Muniz JAPC; Bastos CO; Gomes BD; Krejcová LV
    Front Neurosci; 2024; 18():1324669. PubMed ID: 38362021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network.
    Pei L; Ak M; Tahon NHM; Zenkin S; Alkarawi S; Kamal A; Yilmaz M; Chen L; Er M; Ak N; Colen R
    Sci Rep; 2022 Jun; 12(1):10826. PubMed ID: 35760886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Canine Skull Digitalization and Three-Dimensional Printing as an Educational Tool for Anatomical Study.
    da Silveira EE; da Silva Lisboa Neto AF; Carlos Sabino Pereira H; Ferreira JS; Dos Santos AC; Siviero F; da Fonseca R; de Assis Neto AC
    J Vet Med Educ; 2021 Dec; 48(6):649-655. PubMed ID: 33226900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multimodal Imaging for Validation and Optimization of Ion Channel-Based Chemogenetics in Nonhuman Primates.
    Hori Y; Nagai Y; Hori Y; Oyama K; Mimura K; Hirabayashi T; Inoue KI; Fujinaga M; Zhang MR; Takada M; Higuchi M; Minamimoto T
    J Neurosci; 2023 Sep; 43(39):6619-6627. PubMed ID: 37620158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Skull defect repair in children using a 3D-printing technology].
    Sulin KA; Ivanov VP; Kim AV; Khachatryan VA
    Zh Vopr Neirokhir Im N N Burdenko; 2020; 84(6):67-75. PubMed ID: 33306301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel methodology for exact targeting of human and non-human primate brain structures and skull implants using atlas-based 3D reconstruction.
    Nadian MH; Farmani S; Ghazizadeh A
    J Neurosci Methods; 2023 May; 391():109851. PubMed ID: 37028519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures.
    Kondo K; Harada N; Masuda H; Sugo N; Terazono S; Okonogi S; Sakaeyama Y; Fuchinoue Y; Ando S; Fukushima D; Nomoto J; Nemoto M
    Acta Neurochir (Wien); 2016 Jun; 158(6):1213-9. PubMed ID: 27052513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery.
    Coelho G; Rabelo NN; Vieira E; Mendes K; Zagatto G; Santos de Oliveira R; Raposo-Amaral CE; Yoshida M; de Souza MR; Fagundes CF; Teixeira MJ; Figueiredo EG
    Neurosurg Focus; 2020 Mar; 48(3):E19. PubMed ID: 32114555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Feasibility and performance of a frameless stereotactic system for targeting subcortical nuclei in nonhuman primates.
    Branco de Paiva F; Campbell BA; Frizon LA; Martin A; Maldonado-Naranjo A; Machado AG; Baker KB
    J Neurosurg; 2021 Mar; 134(3):1064-1071. PubMed ID: 32114536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Connectome analysis for pre-operative brain mapping in neurosurgery.
    Hart MG; Price SJ; Suckling J
    Br J Neurosurg; 2016 Oct; 30(5):506-17. PubMed ID: 27447756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nerves of Steel: a Low-Cost Method for 3D Printing the Cranial Nerves.
    Javan R; Davidson D; Javan A
    J Digit Imaging; 2017 Oct; 30(5):576-583. PubMed ID: 28224379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.