These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32745275)

  • 1. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change.
    González-Del-Pliego P; Scheffers BR; Freckleton RP; Basham EW; Araújo MB; Acosta-Galvis AR; Medina Uribe CA; Haugaasen T; Edwards DP
    J Anim Ecol; 2020 Nov; 89(11):2451-2460. PubMed ID: 32745275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microhabitats reduce animal's exposure to climate extremes.
    Scheffers BR; Edwards DP; Diesmos A; Williams SE; Evans TA
    Glob Chang Biol; 2014 Feb; 20(2):495-503. PubMed ID: 24132984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL
    PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microhabitats in the tropics buffer temperature in a globally coherent manner.
    Scheffers BR; Evans TA; Williams SE; Edwards DP
    Biol Lett; 2014 Dec; 10(12):20140819. PubMed ID: 25540160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming.
    Turriago JL; Tejedo M; Hoyos JM; Bernal MH
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using warming tolerances to predict understory plant responses to climate change.
    Wei L; Sanczuk P; De Pauw K; Caron MM; Selvi F; Hedwall PO; Brunet J; Cousins SAO; Plue J; Spicher F; Gasperini C; Iacopetti G; Orczewska A; Uria-Diez J; Lenoir J; Vangansbeke P; De Frenne P
    Glob Chang Biol; 2024 Jan; 30(1):e17064. PubMed ID: 38273565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes.
    Jucker T; Hardwick SR; Both S; Elias DMO; Ewers RM; Milodowski DT; Swinfield T; Coomes DA
    Glob Chang Biol; 2018 Nov; 24(11):5243-5258. PubMed ID: 30246358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species.
    Lawhorn KA; Yanoviak SP
    Environ Entomol; 2022 Dec; 51(6):1218-1223. PubMed ID: 36346643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.
    Catenazzi A; Lehr E; Vredenburg VT
    Conserv Biol; 2014 Apr; 28(2):509-17. PubMed ID: 24372791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards.
    Ma L; Sun BJ; Li SR; Hao X; Bi JH; Du WG
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):252-261. PubMed ID: 29806241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK; Hanna R; Smith TB; Fiaboe KKM; Fomena A; Bonebrake TC
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 34416009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming.
    Delgado-Suazo P; Burrowes PA
    J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropical forests are thermally buffered despite intensive selective logging.
    Senior RA; Hill JK; Benedick S; Edwards DP
    Glob Chang Biol; 2018 Mar; 24(3):1267-1278. PubMed ID: 29052295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles.
    Frishkoff LO; Hadly EA; Daily GC
    Glob Chang Biol; 2015 Nov; 21(11):3901-16. PubMed ID: 26148337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL; Chown SL; Janion-Scheepers C; Clusella-Trullas S
    Conserv Physiol; 2016; 4(1):cow053. PubMed ID: 27933165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient.
    Pintanel P; Tejedo M; Salinas-Ivanenko S; Jervis P; Merino-Viteri A
    J Anim Ecol; 2021 Aug; 90(8):1985-1995. PubMed ID: 33942306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source of environmental data and warming tolerance estimation in six species of North American larval anurans.
    Katzenberger M; Hammond J; Tejedo M; Relyea R
    J Therm Biol; 2018 Aug; 76():171-178. PubMed ID: 30143292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.