These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32745476)
1. Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Braden L; Michaud D; Igboeli OO; Dondrup M; Hamre L; Dalvin S; Purcell SL; Kongshaug H; Eichner C; Nilsen F; Fast MD Int J Parasitol; 2020 Sep; 50(10-11):873-889. PubMed ID: 32745476 [TBL] [Abstract][Full Text] [Related]
2. A method for stable gene knock-down by RNA interference in larvae of the salmon louse (Lepeophtheirus salmonis). Eichner C; Nilsen F; Grotmol S; Dalvin S Exp Parasitol; 2014 May; 140():44-51. PubMed ID: 24632188 [TBL] [Abstract][Full Text] [Related]
3. Chitin synthesis and degradation in Lepeophtheirus salmonis: Molecular characterization and gene expression profile during synthesis of a new exoskeleton. Harðardóttir HM; Male R; Nilsen F; Eichner C; Dondrup M; Dalvin S Comp Biochem Physiol A Mol Integr Physiol; 2019 Jan; 227():123-133. PubMed ID: 30326269 [TBL] [Abstract][Full Text] [Related]
4. Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness. Braden LM; Sutherland BJ; Koop BF; Jones SR BMC Genomics; 2017 Jan; 18(1):110. PubMed ID: 28137252 [TBL] [Abstract][Full Text] [Related]
5. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. Poley JD; Braden LM; Messmer AM; Igboeli OO; Whyte SK; Macdonald A; Rodriguez J; Gameiro M; Rufener L; Bouvier J; Wadowska DW; Koop BF; Hosking BC; Fast MD Int J Parasitol Drugs Drug Resist; 2018 Aug; 8(2):174-188. PubMed ID: 29627513 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterisation and functional analysis of LsChi2, a chitinase found in the salmon louse (Lepeophtheirus salmonis salmonis, Krøyer 1838). Eichner C; Harasimczuk E; Nilsen F; Grotmol S; Dalvin S Exp Parasitol; 2015; 151-152():39-48. PubMed ID: 25643862 [TBL] [Abstract][Full Text] [Related]
7. Silencing of ionotropic receptor 25a decreases chemosensory activity in the salmon louse Lepeophtheirus salmonis during the infective stage. Núñez-Acuña G; Gallardo-Escárate C; Skiftesvik AB; Fields DM; Browman HI Gene; 2019 May; 697():35-39. PubMed ID: 30794911 [TBL] [Abstract][Full Text] [Related]
8. Chitin Synthases Are Critical for Reproduction, Molting, and Digestion in the Salmon Louse ( Harðardóttir HM; Male R; Nilsen F; Dalvin S Life (Basel); 2021 Jan; 11(1):. PubMed ID: 33450932 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization and functional analysis of components of the TOR pathway of the salmon louse, Lepeophtheirus salmonis (Krøyer, 1838). Sandlund L; Kongshaug H; Nilsen F; Dalvin S Exp Parasitol; 2018 May; 188():83-92. PubMed ID: 29625096 [TBL] [Abstract][Full Text] [Related]
10. Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E Dalvin S; Eichner C; Dondrup M; Øvergård AC Parasit Vectors; 2021 Apr; 14(1):206. PubMed ID: 33874988 [TBL] [Abstract][Full Text] [Related]
11. A novel approach to co-expression network analysis identifies modules and genes relevant for moulting and development in the Atlantic salmon louse (Lepeophtheirus salmonis). Zhou Z; Eichner C; Nilsen F; Jonassen I; Dondrup M BMC Genomics; 2021 Nov; 22(1):832. PubMed ID: 34789144 [TBL] [Abstract][Full Text] [Related]
12. Multivariate evaluation of the effectiveness of treatment efficacy of cypermethrin against sea lice (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar). Jimenez DF; Revie CW; Hardy SP; Jansen PA; Gettinby G BMC Vet Res; 2013 Dec; 9():258. PubMed ID: 24354936 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization and knock-down of salmon louse (Lepeophtheirus salmonis) prostaglandin E synthase. Eichner C; Øvergård AC; Nilsen F; Dalvin S Exp Parasitol; 2015 Dec; 159():79-93. PubMed ID: 26348267 [TBL] [Abstract][Full Text] [Related]
14. Responses to Mineral Supplementation and Salmon Lice ( Sveen L; Krasnov A; Timmerhaus G; Bogevik AS Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33921813 [TBL] [Abstract][Full Text] [Related]
15. Effects of chitin synthesis inhibitor treatment on Lepeophtheirus salmonis (Copepoda, Caligidae) larvae. Harðardóttir HM; Male R; Nilsen F; Dalvin S PLoS One; 2019; 14(9):e0222520. PubMed ID: 31545833 [TBL] [Abstract][Full Text] [Related]
16. Gene silencing reveals multiple functions of Na Komisarczuk AZ; Kongshaug H; Nilsen F Exp Parasitol; 2018 Feb; 185():79-91. PubMed ID: 29339143 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of iron regulatory protein 1A and 1B in the blood-feeding copepod Lepeophtheirus salmonis. Tröße C; Kongshaug H; Dondrup M; Nilsen F Exp Parasitol; 2015 Oct; 157():1-11. PubMed ID: 26115940 [TBL] [Abstract][Full Text] [Related]
18. Ionotropic receptors signal host recognition in the salmon louse (Lepeophtheirus salmonis, Copepoda). Komisarczuk AZ; Grotmol S; Nilsen F PLoS One; 2017; 12(6):e0178812. PubMed ID: 28582411 [TBL] [Abstract][Full Text] [Related]
19. Iron metabolism modulation in Atlantic salmon infested with the sea lice Lepeophtheirus salmonis and Caligus rogercresseyi: A matter of nutritional immunity? Valenzuela-Muñoz V; Gallardo-Escárate C Fish Shellfish Immunol; 2017 Jan; 60():97-102. PubMed ID: 27888129 [TBL] [Abstract][Full Text] [Related]
20. Sexual maturation and administration of 17β-estradiol and testosterone induce complex gene expression changes in skin and increase resistance of Atlantic salmon to ectoparasite salmon louse. Krasnov A; Wesmajervi Breiland MS; Hatlen B; Afanasyev S; Skugor S Gen Comp Endocrinol; 2015 Feb; 212():34-43. PubMed ID: 25599658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]