These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32745683)

  • 21. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.
    Savalia NK; Agres PF; Chan MY; Feczko EJ; Kennedy KM; Wig GS
    Hum Brain Mapp; 2017 Jan; 38(1):472-492. PubMed ID: 27634551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI.
    Daniel AJ; Smith JA; Spencer GS; Jorge J; Bowtell R; Mullinger KJ
    Hum Brain Mapp; 2019 Feb; 40(2):578-596. PubMed ID: 30339731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.
    Faraji-Dana Z; Tam F; Chen JJ; Graham SJ
    Magn Reson Imaging; 2016 Oct; 34(8):1206-19. PubMed ID: 27451407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brief mock-scan training reduces head motion during real scanning for children: A growth curve study.
    Gao P; Wang YS; Lu QY; Rong MJ; Fan XR; Holmes AJ; Dong HM; Li HF; Zuo XN
    Dev Cogn Neurosci; 2023 Jun; 61():101244. PubMed ID: 37062244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating fMRI-Based Estimation of Eye Gaze During Naturalistic Viewing.
    Son J; Ai L; Lim R; Xu T; Colcombe S; Franco AR; Cloud J; LaConte S; Lisinski J; Klein A; Craddock RC; Milham M
    Cereb Cortex; 2020 Mar; 30(3):1171-1184. PubMed ID: 31595961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging effect on head motion: A Machine Learning study on resting state fMRI data.
    Saccà V; Sarica A; Quattrone A; Rocca F; Quattrone A; Novellino F
    J Neurosci Methods; 2021 Mar; 352():109084. PubMed ID: 33508406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of head motion in children during various fMRI language tasks.
    Yuan W; Altaye M; Ret J; Schmithorst V; Byars AW; Plante E; Holland SK
    Hum Brain Mapp; 2009 May; 30(5):1481-9. PubMed ID: 18636549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The intra-session reliability of functional connectivity during naturalistic viewing conditions.
    Hlinka J; Děchtěrenko F; Rydlo J; Androvičová R; Vejmelka M; Jajcay L; Tintěra J; Lukavský J; Horáček J
    Psychophysiology; 2022 Oct; 59(10):e14075. PubMed ID: 35460523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging.
    Finn ES; Glerean E; Khojandi AY; Nielson D; Molfese PJ; Handwerker DA; Bandettini PA
    Neuroimage; 2020 Jul; 215():116828. PubMed ID: 32276065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active head motion reduction in magnetic resonance imaging using tactile feedback.
    Krause F; Benjamins C; Eck J; Lührs M; van Hoof R; Goebel R
    Hum Brain Mapp; 2019 Oct; 40(14):4026-4037. PubMed ID: 31179609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual differences in impulsivity predict head motion during magnetic resonance imaging.
    Kong XZ; Zhen Z; Li X; Lu HH; Wang R; Liu L; He Y; Zang Y; Liu J
    PLoS One; 2014; 9(8):e104989. PubMed ID: 25148416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and environmental influences on MRI scan quantity and quality.
    Achterberg M; van der Meulen M
    Dev Cogn Neurosci; 2019 Aug; 38():100667. PubMed ID: 31170550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between head motion and coil sensitivity in accelerated fMRI.
    Faraji-Dana Z; Tam F; Chen JJ; Graham SJ
    J Neurosci Methods; 2016 Sep; 270():46-60. PubMed ID: 27288867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms.
    Wang J; Ren Y; Hu X; Nguyen VT; Guo L; Han J; Guo CC
    Hum Brain Mapp; 2017 Apr; 38(4):2226-2241. PubMed ID: 28094464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A studyforrest extension, MEG recordings while watching the audio-visual movie "Forrest Gump".
    Liu X; Dai Y; Xie H; Zhen Z
    Sci Data; 2022 May; 9(1):206. PubMed ID: 35562378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved model of motion-related signal changes in fMRI.
    Patriat R; Reynolds RC; Birn RM
    Neuroimage; 2017 Jan; 144(Pt A):74-82. PubMed ID: 27570108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging.
    Vanderwal T; Eilbott J; Castellanos FX
    Dev Cogn Neurosci; 2019 Apr; 36():100600. PubMed ID: 30551970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.