These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32745873)

  • 1. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification.
    Su W; Liu P; Cai C; Ma H; Jiang B; Xing Y; Liang Y; Cai L; Xia C; Le QV; Sonne C; Lam SS
    J Hazard Mater; 2021 Jan; 402():123541. PubMed ID: 32745873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts.
    Su W; Zhao M; Xing Y; Ma H; Liu P; Li X; Zhang H; Wu Y; Xia C
    Environ Res; 2022 Nov; 214(Pt 4):114093. PubMed ID: 35998690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving hydrogen-rich gas production from biomass catalytic steam gasification over metal-doping porous biochar.
    Kong G; Liu Q; Ji G; Jia H; Cao T; Zhang X; Han L
    Bioresour Technol; 2023 Nov; 387():129662. PubMed ID: 37573983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of H
    Su H; Kanchanatip E; Wang D; Zheng R; Huang Z; Chen Y; Mubeen I; Yan M
    Waste Manag; 2020 Feb; 102():520-527. PubMed ID: 31765972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars.
    Kong G; Wang K; Zhang X; Li J; Han L; Zhang X
    Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel.
    Khandelwal K; Boahene P; Nanda S; Dalai AK
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review.
    Su W; Li X; Zhang H; Xing Y; Liu P; Cai C
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):47838-47855. PubMed ID: 34302242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal.
    Quiroga E; Cifuentes B; Moltó J; Ortuño N; Conesa J; Davó-Quiñonero A; Cobo M
    Waste Manag; 2022 Jun; 147():48-59. PubMed ID: 35623261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models.
    Khandelwal K; Dalai AK
    Molecules; 2024 May; 29(10):. PubMed ID: 38792198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.
    Chen G; Yao J; Liu J; Yan B; Shan R
    Bioresour Technol; 2015 Dec; 198():108-14. PubMed ID: 26378962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas reforming and tar decomposition performance of nickel oxide (NiO)/SBA-15 catalyst in gasification of woody biomass.
    Inoue N; Tada T; Kawamoto K
    J Air Waste Manag Assoc; 2019 Apr; 69(4):502-512. PubMed ID: 30540545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.
    Li J; Chen J; Chen S
    Ecotoxicol Environ Saf; 2018 Aug; 157():102-110. PubMed ID: 29609106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental and thermodynamic equilibrium investigation of heavy metals transformation in supercritical water gasification of oily sludge.
    Li L; Li X; Cao W
    J Environ Manage; 2023 Dec; 348():119365. PubMed ID: 37862888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical water gasification of biomass for H2 production: process design.
    Fiori L; Valbusa M; Castello D
    Bioresour Technol; 2012 Oct; 121():139-47. PubMed ID: 22858478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical water gasification of microalgae over a two-component catalyst mixture.
    Duan PG; Li SC; Jiao JL; Wang F; Xu YP
    Sci Total Environ; 2018 Jul; 630():243-253. PubMed ID: 29477822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-rich syngas production from biomass gasification using biochar-based nanocatalysts.
    Yang G; Hu Q; Hu J; Yang H; Yan S; Chen Y; Wang X; Chen H
    Bioresour Technol; 2023 Jul; 379():129005. PubMed ID: 37019416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review.
    Ghosh D; Maiti SK
    Int J Phytoremediation; 2021; 23(6):559-576. PubMed ID: 33174450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators.
    Lu S; Du Y; Zhong D; Zhao B; Li X; Xu M; Li Z; Luo Y; Yan J; Wu L
    Environ Sci Technol; 2012 May; 46(9):5025-31. PubMed ID: 22458922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.