These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32746022)

  • 1. Bidirectional Optogenetic Control of Inhibitory Neurons in Freely-Moving Mice.
    Noked O; Levi A; Someck S; Amber-Vitos O; Stark E
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):416-427. PubMed ID: 32746022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes.
    Kampasi K; English DF; Seymour J; Stark E; McKenzie S; Vöröslakos M; Buzsáki G; Wise KD; Yoon E
    Microsyst Nanoeng; 2018; 4():. PubMed ID: 30766759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe.
    Li L; Lu L; Ren Y; Tang G; Zhao Y; Cai X; Shi Z; Ding H; Liu C; Cheng D; Xie Y; Wang H; Fu X; Yin L; Luo M; Sheng X
    Nat Commun; 2022 Feb; 13(1):839. PubMed ID: 35149715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs).
    Sridharan A; Shah A; Kumar SS; Kyeh J; Smith J; Blain-Christen J; Muthuswamy J
    Biomed Phys Eng Express; 2020 Feb; 6(2):025003. PubMed ID: 33438629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 8. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 12. A low-cost microfluidic platform coupled with light emitting diode for optogenetic analysis of neuronal response in C. elegans.
    Ge A; Hu L; Fan J; Ge M; Wang X; Wang S; Feng X; Du W; Liu BF
    Talanta; 2021 Feb; 223(Pt 1):121646. PubMed ID: 33303134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.
    Wu F; Stark E; Ku PC; Wise KD; Buzsáki G; Yoon E
    Neuron; 2015 Dec; 88(6):1136-1148. PubMed ID: 26627311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.
    Han X; Boyden ES
    PLoS One; 2007 Mar; 2(3):e299. PubMed ID: 17375185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice.
    Zhang J; Zhang KY; Zhang LB; Zhang WW; Feng H; Yao ZX; Hu B; Chen H
    Sci Rep; 2019 Feb; 9(1):1857. PubMed ID: 30755637
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.