These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32746051)

  • 21. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a passive pediatric leg exoskeleton during gait.
    Zistatsis J; Peters KM; Ballesteros D; Feldner HA; Bjornson K; Steele KM
    Prosthet Orthot Int; 2021 Apr; 45(2):153-160. PubMed ID: 33094685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons.
    Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling a Lower-Leg Exoskeleton Using Voltage and Current Variation Signals of a DC Motor Mounted at the Knee Joint.
    Al-Ayyad M; Moh'd BA; Qasem N; Al-Takrori M
    J Med Syst; 2019 Jun; 43(7):229. PubMed ID: 31197587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearing a back-support exoskeleton alters lower-limb joint kinetics during single-step recovery following a forward loss of balance.
    Park JH; Madigan ML; Kim S; Nussbaum MA; Srinivasan D
    J Biomech; 2024 Mar; 166():112069. PubMed ID: 38579560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
    Glowinski S; Obst M; Majdanik S; Potocka-Banaś B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking.
    Peng X; Acosta-Sojo Y; Wu MI; Stirling L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles.
    Sanchez-Villamañan MDC; Gonzalez-Vargas J; Torricelli D; Moreno JC; Pons JL
    J Neuroeng Rehabil; 2019 May; 16(1):55. PubMed ID: 31072370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers With Motorized Tuning of Squat Heights.
    Tu Y; Zhu A; Song J; Zhang X; Cao G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():184-193. PubMed ID: 35030082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
    Shamaei K; Cenciarini M; Adams AA; Gregorczyk KN; Schiffman JM; Dollar AM
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2389-401. PubMed ID: 25955513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating human joint moments unifies exoskeleton control, reducing user effort.
    Molinaro DD; Kang I; Young AJ
    Sci Robot; 2024 Mar; 9(88):eadi8852. PubMed ID: 38507475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.