These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32746072)

  • 1. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme.
    Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model.
    Yao S; Zhuang Y; Li Z; Song R
    Front Neurorobot; 2018; 12():16. PubMed ID: 29692719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller.
    Xie C; Yang Q; Huang Y; Su S; Xu T; Song R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1332-1342. PubMed ID: 34813476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection.
    Castiblanco JC; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot.
    Mashayekhi M; Moghaddam MM
    J Biomech; 2022 Jun; 138():111104. PubMed ID: 35561557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System.
    Shen Y; Sun J; Ma J; Rosen J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hand Exoskeleton for Stroke Survivors' Activities of Daily Life
    Ghassemi M; Kamper DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6734-6737. PubMed ID: 34892653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial.
    Yeung LF; Lau CCY; Lai CWK; Soo YOY; Chan ML; Tong RKY
    J Neuroeng Rehabil; 2021 Jan; 18(1):19. PubMed ID: 33514393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors.
    Rinaldi L; Yeung LF; Lam PC; Pang MYC; Tong RK; Cheung VCK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2203-2213. PubMed ID: 32804652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.